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Abstract

Machine learning (ML) is becoming more and more important throughout the

mathematical and theoretical sciences. In this work we apply modern ML methods

to gravity models of pairwise interactions in international economics. We explain

the formulation of graphical neural networks (GNNs), models for graph-structured

data that respect the properties of exchangeability and locality. GNNs are a natural

and theoretically appealing class of models for international trade, which we demon-

strate empirically by fitting them to a large panel of annual-frequency country-level

data. We then use a symbolic regression algorithm to turn our fits into interpretable

models with performance comparable to state of the art hand-crafted models moti-

vated by economic theory. The resulting symbolic models contain objects resembling

market access functions, which were developed in modern structural literature, but

in our analysis arise ab initio without being explicitly postulated. Along the way,

we also produce several model-consistent and model-agnostic ML-based measures

of bilateral trade accessibility.
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1 Introduction

This study deals with international economics, focusing on gravity equation for interna-

tional trade. Taking a large panel of annual country-level data (68 years for 181 countries),

we are interested in leveraging recent developments in Machine Learning (ML) to assess

what insights it may offer to existing empirical and theoretical knowledge. Specifically,

we use Neural Network (NN) models to construct a flexible formulation of the gravity

equation (and, separately, a measure of bilateral accessibility of an importer to an ex-

porter), and then utilize algorithmic tools to help us interpret the internal mechanics of

the optimally fitted gravity NN.

The observation that trade flows between pairs of countries can be well captured by

an expression with a striking resemblance to Isaac Newton’s universal law of gravitation,1

Trade(i↔ j) ≈ γ
GDPi ×GDPj

Distance(i, j)
, (1)

goes back to Jan Tinbergen (1962). Since then international economics has expanded our

understanding tremendously, both theoretically and empirically, but we believe that new

tools can bring further progress on this front.

Modern ML has achieved impressive results over the last several years, with applica-

tions of NNs to image recognition (Krizhevsky et al., 2012; Szegedy et al., 2014), natural

language processing (Vaswani et al., 2017) or chemistry (Jumper et al., 2021), as well as

reinforcement learning to game playing (Silver et al., 2018), theorem proving (Kaliszyk

et al., 2018; Zombori et al., 2020) and knowledge discovery (Gauthier, 2020; Davies et al.,

2021; Wagner, 2021).2 Recognizing our focus area, international trade, as a canonical

example of the mathematical structure known as a graph, we make use of Graph Neural

Network (GNN) models, which have demonstrated strong results in the corresponding

application domains (Kipf, 2016).

Two key ingredients in many theoretical gravity models are so-called multilateral re-

sistance terms, or market access functions, which scale each of the exporter (importer)

country’s market size by the size of its respective import (export) partners, thus defining

them in relative terms and reflecting the degree of competition in each market.3 In graph

1Below, γ is a constant parameter. We also replaced the GNP used in the original formulation with

the GDP, and set power coefficients on three right hand side (r.h.s.) variables to “1”, “1” and “-1”,

respectively (thus making the equation symmetric). Also note that in this formulation the left hand side

(l.h.s.) is understood as a 2-dimensional vector since trade is flowing in both directions, or as a scalar if

their sum is considered.
2Similarly to computer science and other disciplines, economics undergoes a renewed interest in NN

methods. Theoretical studies establishing rigorous foundations behind NNs include Chen (2007), Hartford

et al. (2017), Farrell et al. (2021). Empirical works demonstrate applications to auctions design (Dütting

et al., 2021), finance (Gu et al., 2020), and macroeconometrics (Verstyuk, 2020). Computer scientists

directly tried their hands in economics as well (Yang et al., 2020).
3The resulting more complicated objects replace countries’ GDPs in the original formulation of Jan

Tinbergen.
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theory and network theory, it is a central observation that the interaction between two

vertices depends not only on the edge connecting them but also on their larger neighbor-

hood within the graph. This type of dependence is innate to GNN models, which learn

by aggregating information over the neighborhood of each vertex. Instead of postulating

specific non-pairwise interactions, a GNN model can represent a very general class of such

interactions, constrained by locality and interchangeability, and learn the specific forms

which are best suited to a particular application case.

Generally speaking, NNs can be understood as a collection of highly flexible func-

tions with many degrees of freedom (i.e., free parameters) that take in some explanatory

variables and produce predicted values for the variables to be explained. Their rich pa-

rameterization does not prevent them from learning useful features of the data in the

training data sample (In-Sample, henceforth IS) and predicting for the test sample (Out-

Of-Sample, OOS). Our unrestricted NN-based model demonstrates a much stronger fit

both IS and OOS than the alternative that explicitly includes restrictions stemming from

economic theory; it also fares strongly in comparison to the “gold-standard” model with

time-varying country fixed effects.4 It is also reassuring that the terms embodying ex-

port and import market characteristics that are generated by our NN model are closely

correlated with their counterparts from the fixed effects benchmark model.

However, fit accuracy in such models is not useful per se, hence our work also focuses

on producing model-consistent measures of bilateral accessibility for a broad set of country

pairs and years that can be used for a wide range of empirical applications. We verify and

confirm that they behave in a reasonable manner (i) on aggregate over the whole length

of our dataset, and also in particular periods such as (ii) financial crisis of 2008-2009 and

ensuing Great recession as well as (iii) enlargement of the European Union over 2004-2013.

Our measures of bilateral accessibility rely on 17 different cultural, geographic, eco-

nomic, legal and political trade cost-related variables that are expressed by an auxiliary

NN, which can be incorporated into any econometric model (including simple linear re-

gressions). On that account, we additionally construct a relatively agnostic measure of

bilateral accessibility based on our auxiliary NN with controls for time-varying exporter

and importer country effects, which may be of independent interest to empirical trade

economists. A notable property that turns out to hold for all our measures of bilat-

eral accessibility is their asymmetry, that is a given pair of countries exhibits different

accessibility depending on which trade direction we are looking at.5

The rich parameterization and overall complexity of NNs means that they generally

do not admit an a priori interpretation. For many applications (for example supporting

crucial human decisions such as medical diagnosis or public policy), this problem is very

serious, and so many techniques have been developed to aid in interpreting them. In our

4The latter two classes of gravity models are well explained in, e.g., Head and Mayer (2014); section

§2 provides additional literature sources.
5In addition to the above, it is also worth noting the relatively small direct contributions of these

measures to corresponding models’ overall explanatory performance.
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work, we use an interpretation method called Symbolic Regression (SR) to find standard

mathematical functions that are able to accurately replicate our NN’s predictions and

performance. Many SR algorithms (including the one we used) provide a list of candidate

interpretations and their use is often guided by common sense and intuition. But as we

will see, SR combined with some economic intuition produced fairly well determined inter-

pretations for our NN model. This approach allowed us to uncover its internal mechanics,

including the values of its reduced-form parameters.

The interpretation we obtain in this way seems to “rediscover” and refine some of

the functional relationships encountered in existing gravity models founded on economic

theory, while outperforming its theory-motivated counterparts in IS and OOS predictions.

For instance, we detect objects similar to multilateral resistance terms. Furthermore, our

interpretation exercise appears to “discover” some functional forms we could not find

analogues of in the literature.6 Some of them are rather counter-intuitive, hence we also

consider their alternative specification (of the Constant Elasticity of Substitution form),

which allows to enforce more intuitive economic relationships between the input variables.

The paper is organized as follows. In the next section we provide references to related

work. Section §3 describes our methods, with a brief review of graph theory as well as

of neural network models and their interpretation. In the following section we formally

define the gravity models used. Data and estimation details can be found in sections §5

and §6. Section §7 contains the main estimation results as well as their discussion and

informal interpretation, including some empirical illustrations. Section §8 provides a more

formal approach to their interpretation. The final section concludes.

2 Related literature

Standard models for gravity-type relationships in international economics in modern

paradigm start from Eaton and Kortum (2002) and Anderson and van Wincoop (2003).

Many gravity models rely on Constant Elasticity of Substitution preferences, but there

are alternatives built on, e.g., translog preferences (Novy, 2013) or Almost Ideal De-

mand System (Fajgelbaum and Khandelwal, 2016). Higher flexibility is also possible with

semi/non-parametric approaches, as in Adão et al. (2017), Lind and Ramondo (2018) or

Adão et al. (2020). This paper can be viewed as a continuation of this effort.

More recent developments in the area focus on rationalizing the role of distance in

gravity models (Chaney, 2018), adding temporal dimension to them in order to capture

path dependence in trade (Morales et al., 2019), further progress in their generalization

(Allen et al., 2020), which resonates with our motivations as well.

An important concept in modern trade literature is a market access function, developed

6It also provides additional evidence (specifically, properly aggregated measures of production have a

larger quantitative impact than those of expenditures) for the dominance of the supply side of the market

in our data, which agrees with the variance decomposition results obtained using original NN’s outputs.
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by Hanson (2005), Redding and Venables (2004), Head and Mayer (2011), Donaldson and

Hornbeck (2016), also see Costinot et al. (2019). It is intended to explicitly model the

impact of third parties on bilateral trade, the effect that is at the heart of our own GNN-

based approach.

Research on gravity models in international economics is vast, and we only scratched

the surface. More references can be found in excellent reviews offered by Head and

Mayer (2014), Costinot and Rodŕıguez-Clare (2014), Donaldson (2015), Redding and

Rossi-Hansberg (2017).

3 Methodological approach

3.1 Graphs

We will start with introducing the basics of graph (equivalently, network) theory.7,8 In

economics, these ideas have already been used in various network models, such as Long

and Plosser (1983); Kakade et al. (2004); Hausmann and Hidalgo (2011); Acemoglu et al.

(2012), but their roots can be traced as far back as Leontief (1941) (also see von Neumann’s

(1945) take).

Mathematically, a graph is defined by a set V of vertices (nodes), and a set E of

edges which is a subset of the set of pairs of vertices, denoted V × V .9 The case in which

every pair of distinct vertices is connected by an edge, so E = {(a, b) ∈ V × V |a 6= b}, is

referred to as the “complete” graph.10 Given this structure, one can label (or “decorate”)

the vertices and edges with numerical or categorical data.

For example, in the case of international trade each country (or firm) corresponds to

a vertex, while the trading relationship between a pair of countries corresponds to an

edge. The variables in equation (1) is then naturally associated to vertices (for example,

GDP or other country-specific data) or edges (trade volumes, geographical distances and

relationships).11

We next review some basic concepts of graph theory. The two vertices a and b incident

to an edge (a, b) are referred to as its head and tail. A path is a sequence of edges

7Standard textbooks are West (2000) and Diestel (2010), with Even and Even (2012), Newman (2010),

and Jackson (2008) providing a somewhat more applied perspective.
8To avoid confusion, in the text we try to adhere to using the term “graph” for correspondingly-

structured data, while reserving the term “network” for the formal structure of NN models.
9By “graph” we will mean an undirected (or unoriented) graph, one in which edges are symmetric in

the sense that (a, b) ∈ E ↔ (b, a) ∈ E. The more general (directed) graphs not satisfying this condition

also arise in economics, for example in input-output networks.
10We will use the (essentially) complete graph in our model, but just to have another example let

us define the “geography” graph G as follows: the vertices are countries, and a pair of countries are

connected by an edge if and only if they share a land border.
11In some cases, e.g., when trade volume is zero, edges may be left-out or their associated variables

may be set to 0.
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(e1, e2, . . . , en) such that for each i, the tail of ei is equal to the head of ei+1. The number

of edges n in a path is its length, while the head of e1 and tail of en are its starting point

and ending point. The k-neighborhood of a vertex a is the set of all vertices which are

the ending points of paths of length less than or equal to k which start at a, while the

k-neighborhood of an edge (a, b) is the union of the k-neighborhoods of a and b. We will

also use a second (slightly different) definition of neighborhood which contains edges as

well; the 0-neighborhood of a vertex a includes all edges incident to a.

We next note two important properties of equation (1), locality and exchangeability,

which we will maintain in generalizing it. In fact the two properties are stronger together

than separately. To explain this, let us refer to the individual equations obtained from (1)

by specializing to a specific pair of countries (fixing the indices a and b) as the “component

equations.”

Locality states that each component equation only relates data contained in a single

k-neighborhood of the graph. If (as is the case for equation 1) the l.h.s. refers to a

single edge (or vertex), we mean the k-neighborhood of that edge (or vertex), though the

definition can be generalized. Since the r.h.s. of equation (1) depends only on data in the

0-neighborhood of the edge (i, j), it is local.

A next generalization of equation (1) would be to allow the r.h.s. to depend on the 1-

neighborhood of the edge (i, j). The strength of this restriction depends on the structure

of the graph; for example it is quite restrictive for the geography graph G, but for the

complete graph it imposes no restriction at all.

Exchangeability states that a general relabeling of the vertices preserves the set of com-

ponent equations. Thus, specific choices of vertex cannot appear; only general indices such

as the i and j of equation (1). An example of an allowed generalization would be for the

r.h.s. to additionally depend on quantities such as
∑

k∈V,k 6=i,j GDPiGDPk/Distance(i, k),

in which every possible choice of the third vertex k appears with equal weight. This ex-

ample can be modified to satisfy locality as well by restricting the sum over k to include

only those vertices connected by an edge to i.

It may not be obvious how to write the most general set of equations which satisfy

both locality and exchangeability. In §3.2 we will state a prescription, known as message

passing, which produces a wide variety of such equations. The basic idea is to intro-

duce latent variables associated to the vertices and edges, each determined by equations

which can depend on the 0-neighborhood of the specific vertex or edge. By composing

these equations, or equivalently allowing each equation to depend on the previously de-

fined latent variables in its 0-neighborhood, one systematically incorporates longer range

dependencies. And as we explain in §3.2, one can get a rich family of parameterized

equations by using the “layer” of (feedforward) neural networks as the basic equation in

this construction. This setup is known as a graph neural network or GNN.
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3.2 Neural networks

Feed-Forward Neural Networks: To give a brief introduction,12 NNs are formed by

a hierarchy (composition) of simple nonlinear functions that transform input data into

outputs, thus producing predictions. The most basic Feed-Forward NN (FFNN) is defined

as follows:

f(z0,θ) := hL+1(hL(· · ·h2(h1(z0)) · · · )), (2)

where each hidden layer ` = 1, . . . , L and output layer ` = L+1 is formed by N ` neurons,

h`(z`−1) := g`(b` +W `z`−1), (3)

with an activation function g` : RN`−1 7→ RN` (which is, usually, a nonlinear transfor-

mation, e.g., sigmoid or Rectified Linear Unit; except in the output layer, in which it is

application-specific and is, oftentimes, a linear or logistic transformation);

θ` := [b`,W `] are parameters of conformable shapes, b` ∈ RN` and W ` ∈ RN`×N`−1 ;

z`−1 is a corresponding function’s input (with sample data z0 sometimes called the input

layer).

FFNN’s output seeks to approximate some unknown function:

f̊(z0,θ) = f(z0,θ) + ξ ≈ f(z0,θ),

where f̊(·) is the unknown data-generating function;

ξ is an approximation error term (residual).

Thus, effectively NNs are flexible functionals used for mapping explanatory input

variables into the explained output variables.

The theoretical appeal of NNs rests on their universal approximation property that

allows them to capture functional representations of complex interrelationships present

in the data with arbitrary precision (Cybenko, 1989; Hornik et al., 1989). Achieving high

approximation accuracy requires high expressive capacity, determined by the number of

layers and neurons (i.e., architecture and parameterization). However, the dependence

of accuracy on these choices is intricate. NNs fitting flexible functions have so many

parameters that they should be thought of as infinitely-dimensional and effectively non-

parametric objects. In general, the expressive capacity, complexity and performance of

NNs are not related to the number of parameters in a simple way.

The current understanding of this relation postulates two statistical learning regimes.

In the “classical” regime, the number of parameters is low relatively to the number of

observations (|θ| smaller than |D|), and the OOS error is convex in |θ| with a sharp

minimum. That is, IS error is decreasing in |θ|, but for |θ| beyond some optimal value the

OOS error starts rising. This phenomenon is called “overfitting” and is well understood

12Good textbooks on the topic are Bishop (2006) or Goodfellow et al. (2016)
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in terms of concepts such as the bias-variance tradeoff, or more intuitively as the idea

that simpler models will generalize better, a version of “Occam’s razor.”13

As one increases the number of parameters |θ| at fixed training set size, eventually one

reaches a number (much greater than |D|) where the model can fit the training obser-

vations perfectly, and the IS error is zero. In the “interpolation” or “overparameterized”

regime the model can perfectly fit any set of training observations of size |D|. Surpris-

ingly, by appropriate use of ML optimization techniques, and if the dataset has structure

which makes prediction possible, as one continues to increase |θ| the OOS error again

decreases, undergoing a “double descent.” Indeed the OOS error can be smaller in this

regime than its optimum in the classical regime. This phenomenon has been called “be-

nign overfitting” and appears to contradict the traditional dogmas of statistics. Evidence

for and analysis of this phenomenon can be found in Zhang et al. (2017); Belkin et al.

(2019); Bartlett et al. (2020); Nakkiran et al. (2019).

In this paper, we focus on the more established classical regime. But the above points

justify why, by ML standards, even our largest model complexity is fairly modest.

Graph Neural Networks: A relatively recent addition to NN frameworks is GNN

(see Kipf (2016), Morris et al. (2019), You et al. (2020); textbook treatments are avail-

able in Hamilton (2020) and, from a broader theoretical perspective, Bronstein et al.

(2021)). Intuitively, Convolutional NNs are well-defined only over grid-structured data

(e.g., images), while Recurrent NNs only for sequential data (e.g., text). GNN formulates

a generalization of convolutions to the non-Euclidean domain (or, to put it differently, a

generalization of recurrencies to the non-uniquely ordered graph domain).

From our perspective, the modeling challenge graphs pose is that they have a complex

geometric structure without an absolute order in space or time. More concretely, graph

data satisfy exchangeability and locality. Therefore, the model should respect them too:

(i) it must be defined over permutation-equivariant inputs; (ii) it must be applied to

neighborhoods rather than a full set of nodes.

In what follows, we will use objects called “node embeddings” that compactly represent

the nodes in the graph: these are latent variables ε(u) ∈ Rdε that for each node u ∈ V
summarize the available local information around it (i.e., both node- and edge-related

inputs) in a task-dependent way. The idea is to place nodes into a low-dimensional space

by compressing the relevant information in a way that allows accurate reconstruction of

the original high-dimensional graph (this is achieved by maintaining distances between

points in two spaces).

Now, mathematically any node-level function ϕ : R|V |×|V | 7→ R|V |×d, when applied

to graph data should satisfy permutation equivariance property (or, abusing slightly the

terminology, exchangeability). That is, ϕ(PAP ᵀ) = Pϕ(A), where A is an adjacency

13A related but slightly different method of achieving simplicity is regularization. This could be a term

in the objective function which favors sparseness, or a step which shrinks parameter values toward 0.
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matrix and P is a permutation matrix.14

Next, aggregation of information from nodes should satisfy locality. Define neighbor-

hood (0-neighborhood, to be precise) of some node u as V (u) := {v ∈ V : (u, v) ∈ E}.
An admissible local function µ({ε(v),∀v ∈ V (·)}) : R|V (·)|×dε 7→ Rdµ operates on a neigh-

borhood V (u), ∀u ∈ V , collects local nodes’ embeddings and generates “messages” of

dimension dµ. The function’s input is a set, hence its first operation must be some kind

of uniform aggregation over all set elements (e.g.,
∑

(·), max(·), min(·), mean(·), etc.).

This still satisfies exhangeability.

Lastly, a function υ(ε(·),µ({ε(v), ∀v ∈ V (·)})) : Rdε+dµ 7→ Rdε iteratively updates the

node’s embedding by combining its current embedding with the latest message aggregating

information about its neighborhood. Formally, for each u ∈ V ,

ε(u) = υ(ε(−1)(u),µ({ε(−1)(v),∀v ∈ V (u)})),

where “(−1)” superscript denotes value from the previous iteration (which is initialized

at, say, node-specific variables z ∈ Rdz compressed to conformable dimensions). After k

iterations (sometimes also called “layers”), node’s embedding reaches out to and captures

information contained in its k-neighborhood.15

To sum up, function µ(·) is called aggregation function, it produces a message aggre-

gating information from the node’s local neighborhood. Function υ(·) is called update

function, it collects messages with aggregated local information and updates the node’s

embedding. Both functions can be formulated as NNs. This learning algorithm is called

“message passing”.

Perhaps the simplest example takes the following form:

µ({ε(v),∀v ∈ V (u)}) :=
∑

v∈V (u)

ε(v),

υ(ε(u),µ({ε(v),∀v ∈ V (u)})) := g(b+W ε ε(u) +W µ µ({ε(v), ∀v ∈ V (u)})),

where notation is the same as in equation (3).16

14Strictly speaking, permutation equivariance is a weaker property than permutation invariance, which

is equivalent to the notion of exchangeability in statistics. A stronger notion is needed for dealing with

whole graphs. Then, a graph-level function ψ : R|V |×|V | 7→ Rd should satisfy permutation invariance,

which requires ψ(PAP ᵀ) = ψ(A).
15As long as υ(ε(·),µ(·)) is a contraction map, this iterative process converges to its fixed point

from any initial value exponentially fast, according to Banach’s fixed point theorem. However, as more

iterations are performed, the learned node embeddings may become very similar to one another and

relatively uninformative (“over-smoothed”): the information being aggregated from the node neighbors

during message passing begins to dominate the updated node representation at the expense of more

local information preserved in the node representation from the previous iterations. (The problem of

over-smoothing is also present in more familiar CNNs.)
16The node-level equation above can be restated as a graph-level system. Using matrix notation, it

becomes: E = G(B +AE(−1)W µ + E(−1)W ε), where E ∈ R|V |×dε is a nodes-by-embedding dimension

matrix of ε(·)-s, B is a matrix of transposed and vertically stacked b-s, and A is the graph adjacency

matrix.
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Now we can see why GNN is a natural framework for models in international eco-

nomics.

(a) Exchangeability of labels makes it possible to formulate an economic model that is

applicable to any generic country or their subset.

(b) Node embeddings summarize multidimensional information collected in disparate

country-specific variables with approximate reduced-dimensional representations. In

our case, node embeddings embody supply- and demand-market characteristics, and

are generated by corresponding NNs.

(c) Standard graph theory formalism built on directed edge connections with continuous,

potentially multi-dimensional edge weights allows for heterogeneous (and possibly

asymmetric) economic links between any two origin and destination trading partners.

In our model, edge-specific variables are compressed by NNs into scalar weights (that

is, bilateral accessibility measures).

(d) Message passing allows to implement the idea of supply and demand market access

functions: that each country’s trade with another country depends not only on the

variables specific to origin and destination countries themselves, but also indirectly

on the third countries that are important for each of the two direct trading partners.

Moreover, iterative message passing in principle allows for higher-order influences,

fourth countries affecting third countries and so on.17

3.3 Interpretability

Given the complexity of most ML models, especially in the case of NNs, their interpre-

tation is a challenging task. For more details, see recent reviews and references there in

(Molnar et al., 2020; Xu et al., 2020). We will now describe two approaches particularly

relevant for NN models in economics.

The first approach is to develop attribution methods which measure the impact and

importance of each explanatory variable. A variable’s marginal impact is measured as

a change in a model’s predicted output given a small change in the input variable, a

quantity which can be calculated using standard automatic differentiation libraries. For

NN models one can reuse the gradients computed for optimization when training the

model; e.g., see Sundararajan et al. (2017). A variable’s causal impact is measured as an

effect on the modeled phenomenon (i.e., dependent, explained variable) of a particular

input factor (explanatory, independent variable), while isolating it from the interference of

confounding variables. Given the prominence of this question to economists, there already

17Such effects are less important for trade between countries in modern, “globalized” period, but were

more important at earlier times. They are still important for modern trade between firms and, even

more so, between individuals. Movements of entities other than goods and services, such as international

human migration, is another possible application domain.
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are techniques for implementing this calculation, as proposed in Hartford et al. (2017) or

Farrell et al. (2021). Uncertainty quantification for the estimates described above can be

done using standard bootstrap procedures (Efron and Tibshirani, 1993) or relying on the

outputs of widely-used dropout techniques (Gal and Ghahramani, 2016; Hartford et al.,

2017).

In turn, variable importance quantifies the contribution of each input variable to

model’s output and allows us to rank inputs accordingly. This can be done using the

gradients discussed above, or their squares or absolute values, e.g. see Dimopoulos et al.

(1995). A simpler method is to measure the deterioration in the model’s performance

when the variable is dropped (in practice one usually sets its value to the sample mean).

A second approach uses surrogate models. This amounts to constructing a secondary

“cartoon” model that approximates the behavior of the original “black box” model but

has a clearer interpretation. One popular class of surrogate model is the decision tree,

e.g. see Augasta and Kathirvalavakumar (2012); Guidotti et al. (2018); Frosst and Hinton

(2017); Bastani et al. (2017). A variation of this approach tailored specifically to GNNs

is proposed in Ying et al. (2019).

One might advocate the automatic construction of a surrogate model by an algorithm

which uses few if any a priori choices. But in practice, researchers usually propose and

fit a variety of candidate surrogate models, guided by attribution methods to keep the

most important variables, and choosing among model classes and parameter counts. The

final choice between these models is based on fidelity to the original NN model but also

on human judgement and intuition. A sign that this approach is appropriate given the

current state of the art is that it is followed even for applications to pure mathematics,

as in Davies et al. (2021). These works do not claim to perform “automated model

discovery” but rather that they work with more general models which make fewer a

priori assumptions than a hand-crafted model.

In this work we focus on the surrogate approach. The formal method we adopt is

symbolic regression (SR) (Schmidt and Lipson, 2009). This procedure searches the equa-

tion space using a genetic algorithm to find algebraic (as well as some transcendental)

functional relationships that closely replicate the performance of a given model, and at

the same time are transparent to and interpretable by humans. Symbolic regression was

used for GNNs in Cranmer et al. (2020) to discover modified physical laws of gravity in

cosmological simulations, and this was one inspiration for the present work. We followed

a similar approach, now combining SR with common sense and economic intuition to

maximize the interpretability of our results.
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4 Models

4.1 Theoretical framework

The general form of the gravity equation for trade is, following Head and Mayer (2014),

X(i← j) =: Xij = GMiSjφij, (4)

where, with countries i, j = 1, . . . , K and time periods t = 1, . . . , T (the latter subscripts

are left out for readability), the following notation is used:

Xij ∈ R+ — trade volume directed from exporter j to importer i;

Mi ∈ R+ — characteristics of import market i that promote demand from all origins;

Sj ∈ R+ — capabilities of exporter j as a supplier to all destinations;

φij ∈ [0, 1] — bilateral accessibility of importer i to exporter j;

G ∈ R+ — parameter that is constant ∀i, j (and possibly ∀t).18

Furthermore, φij := τ εij, with τij denoting trade costs and ε denoting elasticity; while

Sk and Mk are functions of φij and country-specific variables.19

A large class of structural economic models specializes the gravity equation (4) with

the following restrictions on Sk and Mk:

Mi :=
Xi

Φi

, (5)

Sj :=
Yj
Ωj

, (6)

Φi =
K∑
k=1

φikYk
Ωk

, (7)

Ωj =
K∑
k=1

φkjXk

Φk

, (8)

where Xi :=
∑K

j=1Xij is the value of the importer’s expenditure on all origin countries

(including itself);

Yj :=
∑K

i=1Xij is the value of the exporter’s production purchased by all destination

countries (including itself);

Φi, Ωj are multilateral resistance terms called market access, or market potential, func-

tions. (They also subsume the constant G.)

The last two objects deserve some elaboration. Φi is an index of consumer market

access, it measures the set of opportunities available to consumers in destination country

18In our data, some observations on Xij (as well as Xi, Yj) and φij are missing, hence the variables

that are available for our analysis are strictly positive quantities. The missing observations are implicitly

equalized to 0.
19For example, an intuitive, näıve gravity equation implies Sk = Mk = Yk,∀k = 1, . . . ,K. An influential

study by Anderson and van Wincoop (2003) assumes balanced trade (Xi = Yi) and symmetric trade costs

(φij = φji), which implies symmetric market access functions (Φi = Ωi) and thus symmetric gravity

equation (Si = Mi).
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i, and is understood as accessibility-weighted sum of the exporter capabilities Sj:

Φi =
∑
k

Skφik,

which reduces to a production-weighted average of relative potential (equation 7).

Ωj is an index of supplier market access, it measures the set of opportunities available

to producers in origin country j, and is understood as accessibility-weighted sum of the

importer characteristics Mi:

Ωj =
∑
k

Mkφkj,

which reduces to an expenditure-weighted average of relative access (equation 8).

Relationship between general and structural formulations: If the general model

4 holds exactly, it can always be recast in terms of a structural model (which involves

economically intuitive observables, multivariate resistance terms Ωj and Φi). Of course,

empirically this is quite far from the truth, hence the two formulations are not equivalent.

In the interest of completeness, let us give a brief argument for when these formulations

coincide.

Let us write the general equation (4) in matrix format,

X = GMφS, (9)

where X and φ are rectangular matrices with elements (Xij) and (φij), respectively, while

M and S are diagonal matrices with diagonal elements Mi and Sj.
20

Consider the case when matrices M and S are full rank, as are Ω and Φ. Then, the

structural equations (5–8) can be written as

1ᵀΩS := 1ᵀX, (10)

MΦ1 := X1, (11)

1ᵀΩ = 1ᵀMφ, (12)

Φ1 = φS1, (13)

where 1 is a column vector of ones (and where, say, Φ subsumes the 1/G term).

Now, without loss of generality, rewrite the general equation (9) with a matrix of

multiplicative mean-one residual terms ς accounting for potential modeling errors:

X = GMφS � ς, (14)

where � stands for an element-wise (Hadamard) product.

20If φ were a general matrix (even with φij in [0, 1]) this would be an overparameterized model without

content. It gains content by postulating a model which determines φij in terms of country-specific data,

as we discuss in later sections. However the argument here does not depend on this.
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If we additionally postulate the presence of multilateral resistance terms,

1ᵀΩ̌S := 1ᵀX, (15)

MΦ̌1 := X1, (16)

then equations (14) and (15–16) produce

1ᵀΩ̌ := 1ᵀMφS � ςS−1, (17)

Φ̌1 := φS � ς1. (18)

Clearly, the last two equations coincide with the structural equations (12–13) if ς is a

matrix of ones (that is, if there are no modeling errors in the general gravity equation

14). More generally, the residuals ς will break the equivalence between two model classes,

differentiating them and modifying the corresponding estimation problems (as well as

their optimal solutions).

4.2 Structural model

To start with, we consider the standard parametric formulation that boils down to equa-

tion (4) with structural restrictions (5)–(6):

lnXij,t = lnG+ ln
Xi,t

Φi,t

+ ln
Yj,t
Ωj,t

+ lnφij,t + ξXij,t, (19)

where Φi,t and Ωj,t are defined analogously to above, and ξXij,t is a residual term.

Of course, there is no specific structural model directly matching such an abstract

formulation, but this parametric implementation provides the upper bound on potential

fit for the structural class of gravity models.

Crucially, the unknown and unobservable φij,t is modeled as a latent variable repre-

sented by a NN, which is discussed next in §4.3.

4.3 Auxiliary neural network for bilateral accessibility

The unobservable φij,t is assumed to be some unknown function of relevant variables,

whose form is approximated by a NN, that is an unconstrained and flexible function of

many theoretically motivated variables:

fφ(Dφ
ij,t) + ξφij,t ≈ fφ(Dφ

ij,t), (20)

where fφ(·) is the NN that approximates the unknown function f̊φ, Dφ
ij,t is a vector of

exogenous trade cost proxy variables and ξφij,t is a residual term (with the whole expression

ultimately mapped onto [0, 1] interval).21

21Note that we compress several different trade cost proxies into a single-dimensional bilateral acces-

sibility measure, but producing an intermediate multidimensional trade cost measure can also be easily

done.
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4.4 Flexible model

Now, we propose a more flexible (and effectively) nonparametric formulation that models

equation (4) as a Graph Neural Network. Its form is captured by equation

lnXij,t = lnG+ lnMi,t + lnSj,t + lnφij,t + ξXij,t, (21)

where lnφij,t is obtained as above in §4.3, ξXij,t is a residual term, while lnMi,t and lnSj,t are

modeled as functions of Xi,t, Yj,t as well as collections {φkj,t, Xk,t}Kk=1 and {φik,t, Yk,t}Kk=1,

with the latter two multi-objects allowing us to account for some role of market access,

i.e.,

lnMi,t ≈ fM (Xi,t, {φik,t, Yk,t}k, {φkj.t, Xk,t}k)

and

lnSj,t ≈ fS (Yj,t, {φkj,t, Xk,t}k, {φik,t, Yk,t}k) ,

defining functions fM(·) and fS(·) above as NN approximations.

The aggregation function we choose to use is
∑

(·), which is very natural for the

application at hand, but satisfies the exchangeability requirement.22 Apart from this, the

outer and inner nonlinear functions are unconstrained and completely flexible. Thus, we

specialize the above formulation to two alternatives.

First, along with the unconstrained form of the outer functions fM(·) and fS(·) that

are NN approximations, we impose a multiplicative form on the inner nonlinear functions

of φik and Yk as well as φkj and Xk:

lnMi,t ≈ fM

(
Xi,t,

∑
k

φik,tYk,t,
∑
k

φkj,tXk,t

)
and

lnSj,t ≈ fS

(
Yj,t,

∑
k

φkj,tXk,t,
∑
k

φik,tYk,t

)
.

Second, in contrast to the above, we allow the inner functions fMφY (·), fMφX(·), fSφX(·)
and fSφY (·) to be NN approximations as well:

lnMi,t ≈ fM

(
Xi,t,

∑
k

fMφY (φik,t, Yk,t),
∑
k

fMφX(φkj,t, Xk,t)

)
and

lnSj,t ≈ fS

(
Yj,t,

∑
k

fSφX(φkj,t, Xk,t),
∑
k

fSφY (φik,t, Yk,t)

)
.

In the second alternative, we further allow fMφY (·), fMφX(·), fSφX(·) and fSφY (·) to range

either on R or on R+.23

22Hence our model may also be viewed as a convolutional GNN.
23Although multilateral resistance terms Φi,t and Ωj,t are not explicitly included in the Flexible model’s

formulation, implicitly they can still make an effect via the second and third arguments of the outer

functions.
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Lastly, note that, in parallel with the Structural model, inner functions fMφY (·) and

fSφY (·) (as well as fMφX(·) and fSφX(·)) can be conveniently thought of as measures of bilateral

accessibility-mediated aggregate production (respectively, expenditures).

4.5 Fixed Effects model

In agreement with existing literature and as an additional check, we also take a formulation

with fixed effects accounting for year and/or country identities.24 It represents equation

(4) by either

lnXij,t = βX0 + βXt + βXi + βXj + ζXij,t, (22)

where βXt , βXi and βXj are year, country j and country i effects, respectively, and ζXij,t is a

residual term subsuming both the bilateral accessibility variable lnφij,t and fitting errors

(with appropriate restrictions on βXt , βXi and βXj ); or by a richer alternative such as

lnXij,t = βX0 + βXi,t + βXj,t + ζXij,t, (23)

where βXi,t and βXj,t are corresponding country-by-year effects, and ζXij,t is a residual term.

Lastly, we consider a hybrid model combining country-by-year fixed effects with an

explicit bilateral accessibility variable lnφij,t (obtained similarly to §4.3):

lnXij,t = βX0 + βXi,t + βXj,t + lnφij,t + ξXij,t, (24)

where the notation is unchanged from above except for the residual term ξXij,t, which no

longer subsumes the bilateral accessibility term. Effectively, here is the general model

(4), and this concrete implementation provides the upper bound on potential fit25 for the

general class of gravity models.

4.6 Remarks

Structural model is interesting because its formulation stems from economic theory, so (i)

the restrictions it imposes, as long as they correctly reflect true causal structure, help to

(efficiently) fit data, and (ii) it can be used for empirical tests of respective theories. The

formulation we adopt here is fairly abstract and is satisfied by a large class of economic

theories, but it can be further specialized to match concrete micro-founded theoretical

models.

Flexible models presented above put a very adaptable and elastic framework on in-

teractions between countries and interdependencies between economic variables charac-

terizing each country. This lets economic data speak for itself, allowing to identify novel

empirical regularities (thus helping “discover” new theoretical models). However, while

not fully general, they are relatively unconstrained, having many “degrees of freedom”

24Essentially, this is the current workhorse approach in the literature.
25This concept is parallel to what is known as “oracle” in computer science.
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to fit the data. Of course, given the vast expressive capacity of NNs that are employed

there, predictive performance beyond the training data set and prevention of overfitting

are important factors to keep in mind when implementing these models.

Fixed Effects models can be viewed here as “gold-standard” benchmarks. Existing

studies recognize them as being fairly efficient at controlling for supply and demand

market characteristics, providing an approximate measure of bilateral accessibility (albeit

contaminated with model residuals in the standard approaches). As long as underlying

theoretical causes can be abstracted away from and bilateral accessibility is the only object

of interest, these models can do the job. This economic theory-agnostic setup is also their

major weakness, prohibiting generalization beyond the training data set and requiring

additional analysis for testing general equilibrium theoretical models.

The auxiliary NN model for bilateral accessibility relies on NN’s universal approxima-

tion property to capture the functional representation of a broad collection of disparate

proxies for trade costs (and their elasticity). It can be viewed as a “black box”, ignoring

complex arrangement and interrelationships inside it; but eliciting φij,t’s sensitivity to

ingredient variables is also straightforward using the corresponding gradients, which are

computed automatically by NN optimization algorithm.

5 Data

We have annual data on 181 countries over 68 years (1949–2016). Full data sample is

split into training (1949–2013) and testing (2014–2016) subsamples.

From the modeling perspective, our data variables are of two types:

(a) country-specific node variables: contig, gdp, gatt;

(b) relationship-specific edge variables: comlang off, comlang ethno, comcol, col45, distw,

tdiff, heg o, heg d, colony, curcol, comcur, comrelig, fta wto, txg fob usd, tmg cif usd.

Basically, the former include each country’s economic, geographic and political attributes

(most importantly, GDP); the latter include economic, geographic, political and religious

attributes (such as volume of imports, common currency, etc.) Variable definitions and

data sources are available in Appendix §A.

Thus, Xij stands for the value of imports of country i from country j that is represented

by tmg cif usd; Xi stands for country i’s expenditures and is represented by gdp plus its

total imports tmg cif usd minus total exports txg fob usd; while Yj stands for country j’s

production and is represented by gdp. Lastly, Dφ
ij includes a broad collection of variables

potentially related to bilateral accessibility φij, specifically comlang off, comlang ethno,

comcol, col45, distw, tdiff, heg o, heg d, colony, curcol, comcur, comrelig, fta wto; as well

as contig and gatt both for origin country j and destination country i.
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6 Estimation details

Conceptually, we would like to estimate linear or non-linear (NN-based) approximations

to some unknown functions of interest. Throughout the paper, fφ(·), fM(·) and so on each

designate a chosen NN specification (as a function of and thus indexed by hyperparameters

defining its architecture, which is not made explicit for readability); they approximate

unknown functions f̊φ, f̊M and so on (i.e., φ, lnM , etc.); and their estimates are denoted

by f̂φ(·), f̂M(·) and so on.

The structural model in §4.2 is estimated by Nonlinear Least Squares: the Mean

Squared Error criterion is minimized by Stochastic Gradient Descent. Regressor inputs

are computed in the following way: the function fφ(·) for latent variable φij,t from §4.3 is

approximated by a NN with L hidden layers each containing Nφ neurons,26 while objects

Φi,t and Ωj,t are recomputed at every iteration of the SGD algorithm. We consider NN

architectures with hyperparameters L ∈ {1, 2, 3, 4} and Nφ ∈ {20, 50, 100}.27

Flexible models in §4.4 are also estimated by Nonlinear Least Squares, minimizing the

MSE criterion by SGD. Regressor functions fφ(·) for φij,t, as well as fM(·) and fS(·)—
and, where necessary, fMφY (·), fMφX(·), fSφX(·) and fSφY (·)—for lnMj,t and lnSj,t are each

approximated by an L-layered NN with N b
a neurons28 in every layer.29 We consider ar-

chitectures with L ∈ {1, 2, 3, 4}, Nφ ∈ {20, 50, 100}, and NM , NS, NM
φX , N

M
φY , N

S
φX , N

S
φY ∈

{10, 20, 50}.
Given that nodes in our graph are very densely connected (i.e., every country trades

with almost every other country), economic intuition suggests that direct trade flows

inevitably dominate the outcomes. Hence, our GNNs are formulated with effectively a

single iteration of message passing (this is relevant to the Flexible model only). 30

Fixed Effects models in §4.5 are estimated by a variation of Ordinary Least Squares,

minimizing the MSE criterion by SGD, with regressor inputs given by appropriately de-

fined categorical dummy variables. The exception is the hybrid model, which combines

the approach of other Fixed Effects models and an L-layered Nφ-neuron NN approxi-

26The return of NN fφ(·) belongs to R, and is mapped onto [0, 1] by applying to it the standard

logistic function, which is defined as S(x) := 1/1 + e−x. Formally, we model the relationship S−1 (φij,t) =

fφ(Dφ
ij,t) + ξφij,t ≈ fφ(Dφ

ij,t); näıvely recovering φij,t with the non-linear transformation S
Ä
fφ(Dφ

ij,t)
ä

poses obvious problems, but for “small” ξφij,t they can be ignored.
27In theory, 1 hidden layer allows to achieve the universal approximation property, but in practice with

finite number of neurons and bounded learning time deeper networks with more than 1 hidden layers

often seem to perform better.
28Specifically, a ∈ {∅, φX, φY }, b ∈ {φ,M, S}.
29The return of NN fφ(·) is on R and then goes through S(·); the returns of NNs fM (·) and fS(·) are

on R; while the returns of NNs fMφY (·), fMφX(·), fSφX(·) and fSφY (·) are either on R or R+, in the latter

case this is achieved by adding an additional overlay and applying an exp(·) function (e.g., formally we

model the object fMφY (·), but as an input to downstream functions provide its transformed counterpart

exp
Ä
fMφY (·)

ä
).

30Such an abridgement also relieves us of the over-smoothing problem. For an example of using a

single-iteration message passing, but in a more challenging setup, see Kampffmeyer et al. (2019).
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Table 1: Estimation results, best models from each class

Model for lnXij,t: Structural Flexible Fixed Effects

× NN to R NN to R+ t, t× i, t× i,
i, t× j t× j,
j BA

L 1 4 3 4 - - 1

Nφ 20 50 50 100 - - 20

NM , NS - 20 20 50 - - -

NM
φX , NM

φY , NS
φX , NS

φY - - 20 50 - - -

Parameters 382 11324 9774 63704 431 24617 24998

R2 IS 0.53 0.61 0.65 0.68 0.54 0.62 0.74

R2 OOS 0.51 0.60 0.65 0.68 - - -

Var. decomposition

lnMi,t 0.21 0.18 0.19 0.21 0.18 0.22 0.24

lnSj,t 0.32 0.30 0.37 0.34 0.32 0.39 0.41

lnφij,t 0.04 0.10 0.06 0.06 - - 0.08

βXt - - - - 0.01 - -

ξij,t or ζij,t 0.44 0.42 0.36 0.33 0.49 0.38 0.27

Notes : Number of observations for each model is 515345 in the training sample

and 54355 in the testing sample. Number of epochs for each model is 1000. “-” stands

for “not applicable”. Models are listed in columns from left to right in the order of their

introduction in text. Model architectures are captured by rows “L”; “Nφ”; “NM , NS”;

“NM
φX , NM

φY , NS
φX , NS

φY ”; and “Parameters”. Goodness-of-fit measure R2 is calculated for

the training (IS) and testing (OOS) samples. Variance decomposition is performed for

the training sample. See text for additional estimation details.

mation of the function fφ(·) for bilateral accessibility φij,t. For the latter, we consider

architectures with hyperparameters L ∈ {1, 2, 3, 4} and Nφ ∈ {20, 50, 100}.

7 Results

7.1 Aggregate aspects

Results for the best model in each class are available in Table 1. Results for all the

considered models are collected in Tables 7 and 8 of Appendix B.31

Architectures, fits, decompositions: Table 1 suggests that the Structural model

requires just 1 hidden layer in its NN for bilateral accessibility φij,t, which is different from

31Note that an explicit time trend term is not included in our models. The results seem not to object:

we do not see a common time trend across country pairs’ residuals.
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other model classes and is probably due to restrictions this model imposes on the way

φij,t can interact with other variables. Optimal architectures in Flexible model classes

require 3-4 layers. Fixed Effects model with a bilateral accessibility term, similarly to

Flexible models, also favors deep architectures; but given its already rich parameterizaton

with time-varying country effects, we focus on the most minimalist specification (which

performs very strongly nevertheless). The number of parameters used in top-performing

Flexible and Fixed Effects models is relatively high; however, (i) as discussed earlier in

§3.2, for NNs such overparameterization is not a problem but may actually be beneficial,

and (ii) this is fairly common for Fixed Effects models applied to large panel data sets. It

is worth emphasizing that the expressive capacity of NNs allows Flexible models to avoid

using a plethora of country- and time-specific categorical dummy variables utilized in

Fixed Effects models, which is an advantage since overabundance of categorical dummies

may absorb some important effects and obstruct the detailed picture.

The goodness of fit, that is the amount of variance that can be explained in-sample

(IS) by either of the three Flexible models is considerably higher than what is achieved

by the Structural model (with our preferred Flexible architecture reaching 0.68, versus

0.53 in the case of Structural model); Flexible models also perform better out-of-sample

(OOS). Fixed Effects models plays the role of benchmark for other model classes here,

with time-varying country effects it exhibits the IS fit of 0.62, and even as high as 0.74

when we include a bilateral accessibility term (as mentioned earlier, they do not generalize

to OOS by construction). It is encouraging to see that in terms of IS fit, our preferred

Flexible model is not far behind the strongest Fixed Effects model.

The bottom panel of Table 1 presents calculations analogous to variance decomposi-

tion.32 It is approximately applicable in our case since r.h.s. variables in Fixed Effects

models are by construction mutually orthogonal, and they are close to being orthogonal in

the other two model classes. One interesting observation is that lnMi,t and lnSj,t objects

contribute less to explaining variance in the Structural and Flexible models than they

do in two larger Fixed Effects models. Another observation is that for all models, con-

tribution to explanatory performance of lnSj,t is almost twice as large as that of lnMi,t.

Lastly, the standalone bilateral accessibility term lnφij,t has a very modest contribution

in all gravity models.

Supply and demand market characteristics: Table 2 compares lnSj,t and lnMi,t

objects from our preferred Structural and Flexible models, and relates them to their

counterparts from Fixed Effects models (that is, to βXj,t and βXi,t). Both Flexible and

Structural model outputs are highly correlated with the their Fixed Effects benchmarks,

32It is well know that for a linear regression equation yt =
∑
i zi,t + εt, where orthogonal variables

zi,t are, for example, βixi,t, the following variance decomposition relationship holds. Defining variance

composition share Share[y; zi] := Cov[y, zi]/Var[y], we have
∑
i Share[y; zi] + Share[y; ε] ≡ 1, with all

shares
∑
i Share[y; zi], by construction, summing to regression R2. For a reference, see Klenow and

Rodŕıguez-Clare (1997).
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Table 2: Correlations, supply and demand market characteristics

lnMi,t lnSj,t

Model for lnXij,t: Structural Flex FEs FEs+BA Structural Flex FEs FEs+BA

Structural 1.00 0.91 0.85 0.83 1.00 0.94 0.89 0.86

Flex (NN to R+) 0.89 1.00 0.89 0.88 0.94 1.00 0.94 0.91

FEs (t× i, t× j) 0.83 0.88 1.00 0.94 0.89 0.93 1.00 0.95

FEs+BA (t× i, t× j) 0.81 0.87 0.93 1.00 0.85 0.91 0.94 1.00

Structural 1.00 0.95 - - 1.00 0.97 - -

Flex (NN to R+) 0.96 1.00 - - 0.98 1.00 - -

FEs (t× i, t× j) - - - - - - - -

FEs+BA (t× i, t× j) - - - - - - - -

Notes : Pearson’s correlation coefficients are presented in the upper-right corner,

Spearman’s correlation coefficients are in the lower-left corner. Results for the training

sample are presented in the top panel, for the testing sample are in the bottom panel.

“-” stands for “not applicable”.

but this interrelationship is especially strong for the Flexible model.

Bilateral accessibility: One of the main practical uses of gravity models for inter-

national trade is measuring bilateral accessibility, its driving factors, impact on other

variables, time evolution. We can get a sense of its aggregate behavior over time from

Figure 1.33 An interesting finding of our analysis is that bilateral accessibility for imports

and exports between a given pair of countries is asymmetric34, which is evident from plots

such as those in Figures 3 and 4 (and is broadly confirmed by statistical comparisons).

Table 3 compares bilateral accessibility across different models. First, lnφij,t correla-

tions for Flexible and Structural models are high, but far from perfect (both Pearson’s and

Spearman’s correlation coefficients are close to 0.9 in either training or testing sample),

which confirms the differences between models and is reflected in, say, Figure 1. Second,

relating bilateral accessibility objects from the Structural and Flexible models to their

counterpart from the Fixed Effects model (that is, comparing lnφij,t or, more conserva-

tively, lnφij,t + ξXij,t, to ζXij,t) shows that for both Structural and Flexible models these

objects are highly correlated with their Fixed Effects benchmarks, but this is especially

true for the Flexible model (i.e., both Pearson’s and Spearman’s correlations are 5-10

percentage points higher in the case of Flexible model).

33Figures mentioned in this paragraph are discussed in more detail in the next subsection.
34That is, φij,t and φji,t are not equal to each other for i 6= j.
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Table 3: Correlations, bilateral accessibility

lnφij,t or ζXij,t (lnφij,t + ξXij,t) or ζXij,t
Model for lnXij,t: Structural Flex FEs FEs+BA Structural Flex FEs FEs+BA

Structural 1.00 0.85 0.43 0.69 1.00 0.91 0.83 0.79

Flex (NN to R+) 0.87 1.00 0.51 0.79 0.88 1.00 0.89 0.86

FEs (t× i, t× j) 0.40 0.45 1.00 0.42 0.78 0.85 1.00 0.91

FEs+BA (t× i, t× j) 0.63 0.76 0.38 1.00 0.73 0.83 0.88 1.00

Structural 1.00 0.88 - - 1.00 0.92 - -

Flex (NN to R+) 0.91 1.00 - - 0.89 1.00 - -

FEs (t× i, t× j) - - - - - - - -

FEs+BA (t× i, t× j) - - - - - - - -

Notes : Pearson’s correlation coefficients are presented in the upper-right corner,

Spearman’s correlation coefficients are in the lower-left corner. Results for the training

sample are presented in the top panel, for the testing sample are in the bottom panel.

“-” stands for “not applicable”.

7.2 Particularities

Now we zoom into particular economic situations in the past to inspect how different

models behaved there.

Full sample: To provide a reference point, Figure 1 depicts the aggregate time series

of (i) bilateral accessibility φij,t for the Structural, our preferred Flexible and the Fixed

Effects model that explicitly includes it as well as (ii) its closest counterparts ζXij,t for the

plain Fixed Effects model and (lnφij,t + ξij,t) for the other three models, taking the same

subset of 448 trading directions between 40 countries and tracking them for the whole

training sample. We can see that bilateral accessibility improves over time for the Flexible

model as well as for the Fixed Effects model including it, but it deteriorates for the Struc-

tural model and starts improving only in early 1990s with the start of “Globalization”.

We are not able to separately identify this object for the plain Fixed Effects model, but

from the right panel it seems to improve over time until 1990s, when it starts deterio-

rating. The behavior exhibited by the Flexible and Fixed Effects model with bilateral

accessibility is in line with our understanding of the actual events.

Financial crisis and Great recession: Figure 2 depicts the aggregate dynamics of

bilateral accessibility at times of the 2008-2009 financial crisis and ensuing “Great reces-

sion”. In spite of narratives about protectionism as political responses to economic difficul-

ties,35 which would have been manifested in measures of bilateral accessibility (specifically,

in effective bilateral accessibility that comprises the residual term as captured by the Fig-

35For some details, see Evenett (2009).
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Figure 1: Aggregate bilateral accessibility: Full training sample.

[Bilateral accessibility as a separate variable, φij,t, as well as bilateral accessibility amalgamated

with gravity equation’s residuals, (lnφij,t + ξij,t) or ζXij,t, implied by different models (Flexible,

Structural, Fixed Effects, Fixed Effects with bilateral accessibility); centering done by, respec-

tively, multiplying/adding G, Mi,t, Sj,t averaged over the whole training sample, thus producing

GM̄S̄φ as well as (lnGM̄S̄ + lnφ+ ξ) or (lnGM̄S̄ + ζ); values are arithmetic averages over 488

trade directions (edges) between 40 countries; time period used is 1949–2013.]

ure’s right panel, since in our application “institutional” variables entering function fφ(·)
are too slow-moving), we do not observe such effects in any of our models’ output.

EU enlargement: While the previous paragraph considers virtually all available coun-

tries over time, we consider next a small subset of countries, differentiating them into

two sub-classes. Figures 3 and 4 depicts the aggregate dynamics of bilateral accessibility

during the process of European Union [EU] enlargement over 2004–2013 based on im-

ports by the “old” EU members from the “new” EU members as well as imports by the

“new” members from the “old” ones, respectively. Economic integration is supposed to

improve bilateral accessibility, which indeed happens to be the case: it is clearly seen for

the Structural and Fixed Effects model with bilateral accessibility, although it seems to

have much more modest effect for the Flexible model. Looking into less clean measures of

accessibility on the right panels, we can see that all four models exhibit an improvement.36

8 Interpreting the “black box”

Interpretation of neural networks is a challenging task. To aid with it, we are using a

procedure called symbolic regression (Schmidt and Lipson, 2009; Cranmer et al., 2020;

Cranmer, 2020), which searches the equation space using a genetic algorithm to find

algebraic (and some transcendental) functional relations that approximate our model’s

36A much broader recent study on this theme is Head and Mayer (2021).
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Figure 2: Aggregate bilateral accessibility: Financial crisis and Great recession.

[Bilateral accessibility as a separate variable, φij,t, as well as bilateral accessibility amalgamated

with gravity equation’s residuals, (lnφij,t + ξij,t) or ζXij,t, implied by different models (Flexible,

Structural, Fixed Effects, Fixed Effects with bilateral accessibility); centering done by, respec-

tively, multiplying/adding G, Mi,t, Sj,t averaged over the whole training sample, thus producing

GM̄S̄φ as well as (lnGM̄S̄ + lnφ + ξ) or (lnGM̄S̄ + ζ); values are arithmetic averages over

13542 trade directions (edges) between 180 countries; time period used is 2006–2013.]
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Figure 3: Aggregate bilateral accessibility: EU enlargement, imports by old members

from new members.

[Bilateral accessibility as a separate variable, φij,t, as well as bilateral accessibility amalgamated

with gravity equation’s residuals, (lnφij,t + ξij,t) or ζXij,t, implied by different models (Flexible,

Structural, Fixed Effects, Fixed Effects with bilateral accessibility); centering done by, respec-

tively, multiplying/adding G, Mi,t, Sj,t averaged over the whole training sample, thus producing

GM̄S̄φ as well as (lnGM̄S̄ + lnφ+ ξ) or (lnGM̄S̄ + ζ); values are arithmetic averages over 195

trade directions (edges) between European Union countries (15 old and 13 new members); time

period used is 2000–2013.]
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Figure 4: Aggregate bilateral accessibility: EU enlargement, imports by new members

from old members.

[Bilateral accessibility as a separate variable, φij,t, as well as bilateral accessibility amalgamated

with gravity equation’s residuals, (lnφij,t + ξij,t) or ζXij,t, implied by different models (Flexible,

Structural, Fixed Effects, Fixed Effects with bilateral accessibility); centering done by, respec-

tively, multiplying/adding G, Mi,t, Sj,t averaged over the whole training sample, thus producing

GM̄S̄φ as well as (lnGM̄S̄ + lnφ+ ξ) or (lnGM̄S̄ + ζ); values are arithmetic averages over 194

trade directions (edges) between European Union countries (15 old and 13 new members); time

period used is 2000–2013.]

performance, and at the same time can be inspected and (potentially) understood by

humans.

This procedure is applied to our preferred Flexible specification, and our implementa-

tion includes the following steps.

First, denoting by f̂(z,θ) with a constant parameter vector θ and explanatory input

vector z an estimate of NN approximation f(·) (i.e., fM(·) and fS(·) as well as fMφY (·),
fMφX(·), fSφX(·) and fSφY (·) with their respective arguments), we take such estimates and

apply the SR algorithm to each of them separately. We view the bilateral accessibility

φij as an unobserved latent variable and approximate its functional relationship to ex-

planatory variables f̊φ by a NN fφ(·), but we do not aim to identify internal mechanics

of the latter and do not apply the SR algorithm to its estimate f̂φ(·), treating φ̂ij in this

exercise as a given input.

Second, we take the raw output of this machine learning algorithm and use our hu-

man common sense and intuition to choose function specifications that balance accuracy

against complexity (but also maintaining plausible symmetries).

Third, the raw functional specifications usually include some constant parameters. We

re-estimate their values when fitting the final symbolic interpretation of our NN model.

Before that, we insert additional free parameters in places where functional forms specify

coefficients of “1” or where the additive intercept is set to “0” (our additions are weakly

redundant and the final optimization algorithm is allowed to set them back to “1” or

“0”). This gives us symbolic interpretations of estimated NN approximations f̂(z,θ)
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(and, presumably, of NN approximations f(·) as well as, hopefully, of unknown func-

tions f̊ themselves), generally denoted as f̃(z,ϑ) for a constant parameter vector ϑ and

explanatory input vector z.

An illustrative output of symbolic regression with top candidate equations ranked by

complexity is available in Appendix C. Reassuringly, we ran the algorithm with many

restarts, and a lot of functional forms appeared again and again in independent runs.

The final results following the steps described above are presented in Table 4.

In terms of model performance, symbolic model fits are quite accurate, with the over-

all encompassing model’s symbolic version approaching the numeric original in terms of

accuracy. This is achieved with a vastly smaller number of parameters.

Qualitatively speaking, the first aspect that catches our eyes is that SR independently

learned that the logarithmic transformation is warranted for outer functions. At the same

time, it notably chose not to “undo” with a logarithm the exponential transformation

imposed manually on inner functions’ outputs (in order to ensure their mapping to R+).

Quantitatively, the salient feature here is that elasticities of trade flows with respect to

supply and demand capacities (i.e., the leading pre-multiplying coefficients in the outer

functions) are close to 1, as is commonly found in the literature.

Even though our Flexible model is, in general, different from the Structural model,

it is instructive to compare the two. Overall, the “discovered” functions seem to depart

substantially from the Structural specifications.37 Nevertheless, in the outer functions we

also find a kind of multilateral resistance terms; albeit without the need for the
∑

k f
b
φX(·),

b ∈ {M,S}, object determining the supplier market access in the Structural model, which

is particularly notable in the case of supplier capabilities fS(·) formulation. The effect of∑
k f

b
φX(·), b ∈ {M,S}, term in outer functions is quantitatively small, however (also, it

is hard to justify the exponent of it that shows up in a multiplicative gravity equation);

while the effect of
∑

k f
b
φY (·), b ∈ {M,S}, is much larger.

As to the inner functions, they look very different from what we have seen in the

Structural models. Here, only the effect of aggregated exporter’s production Yk variable

is quantitatively important, with an ultimately positive marginal effect on the gravity

equation’s l.h.s. In particular, the role of bilateral accessibility φij is quantitatively small

in the inner functions, effectively restricting its impact to be constant across country pairs

and time periods. This may be due to the fact that φij is not too volatile overall, across

both country pairs and years: on a fixed set of 488 bilateral country edges across 65 years,

its coefficient of variation38 is a modest 0.17. Also, it is highly correlated across country

pairs: its first principal component explains 74% of variance (and the second one only

4%). (Of course, φij still plays a role as a standalone term; its contribution to explained

variance is fairly small though, see table 1).

37Some of the additive constant parameters, as those seen in the denominators of fM (·) and fS(·),
perform a relatively innocuous centering of input variables, and we leave aside their discussion.

38A coefficient of variation of a random variable is defined as its standard deviation divided by the

mean.
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Table 4: Interpretation by unrestricted Symbolic Regression, best Flexible model

Model specification

R2 IS R2 OOS

lnXij = lnG+ fMi + fSj + lnφij + ξXij 0.61 0.58

Composition

Estimated approximations Symbolic form

Function, f̂(z,θ) Arguments, z Function, f̃(z,ϑ) R2 IS MSE IS

f̂M (·) Xi,
∑

k f̂
M
φY (·),

∑
k f̂

M
φX(·) ϑ1 ln(ϑ10+ϑ11z1ϑ20+ϑ21z2

) + ϑ3z3 0.96 0.15

f̂S (·) Yj ,
∑

k f̂
S
φX(·),

∑
k f̂

S
φY (·) ϑ1 ln(ϑ10+ϑ11z1ϑ30+ϑ31z3

) + ϑ2z2 0.95 0.21

ln f̂MφX(·), ln f̂SφX(·) φ̂kj , Xk ϑ0 + ϑ1z1 + ϑ2z2 0.99 70.28

ln f̂MφY (·), ln f̂SφY (·) φ̂ik, Yk ϑ0 + ϑ10+ϑ11z1
ϑ20+ϑ21z2

0.98 62.51

Descriptive statistics Numeric form

Mean Mean Function, f̃(z, ϑ̂)

[St.Dev.] [St.Dev.]

−1.39 150.47, 16.95, 7.19 0.9853 ln(0.1818+1.2808z1
5.0208+0.5757z2

) + 0.0570z3

[1.97] [790.89, 13.40, 7.22]

−2.05 149.71, 3.87, 19.61 1.1857 ln(0.8767+0.9773z1
6.7095+0.6026z3

)− 0.0755z2

[2.16] [771.65, 4.75, 14.17]

−30.53,−30.53 0.06, 355.45 −0.0042− 0.0041z1 + 0.0002z2

[80.24, 80.24] [0.18, 1259.07]

−37.17,−37.17 0.06, 345.01 −0.9710 + 0.0014+0.0006z1
1.2024+0.2622z2

[57.90, 57.90] [0.18, 1222.06]

Notes: Number of observations for each component is 515345 in the training sample and 54355 in the testing sample (the latter sample is not used

separately for outer and inner functions). Number of epochs for each component is 1000. Bilateral accessibility term lnφij is taken as an exogenous

input. Parameter vectors θ and ϑ as well as input variable vectors z are component-specific. Time subscripts are omitted throughout. See text for

additional details on symbolic regression.
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To sum up, some of the “discovered” functional forms and relationships resemble those

present in the existing theoretical and empirical literature.

As a result of imposing an exponential transformation on the inner functions’ outputs,

the additive terms
∑

k f
b
φX(·), b ∈ {M,S}, in the outer functions enter the final (multi-

plicative) gravity equation in an economically dubious form. The exponential transforma-

tion, which is defined by a continuous and differentiable everywhere function, was used for

streamlining the optimization algorithm rather than for reasons stemming from economic

theory. At the same time, the inner functions’ formulations favored by the SR algorithm

are also not entirely satisfactory from an economic standpoint. Therefore, we consider

the alternative, arguably more natural for our application, that is offered by a general

Constant Elasticity of Substitution (CES) function.39 Effectively, we take the estimated

NN approximations and fit them with the CES specification in place of the specifica-

tion based on a linear/fractional inner function formulation followed by an exponential

transformation, testing the hypothesis that the latter is in fact the true ingredient of the

unknown data-generating function. Table 5 summarizes this exercise.

With the CES restriction, inner functions fit slightly worse than in the original sym-

bolic formulation from Table 4. However, the overall performance of the encompassing

symbolic model is now even stronger and exceeds that of the unrestricted symbolic alter-

native both IS and OOS.40

In contrast to the original formulation in Table 4, inner functions fMφY (·) and fSφY (·)
(as well as fMφX(·) and fSφX(·), which are still negligible in quantitative sense) now combine

bilateral accessibility φik (φkj) and production Yk (expenditures Xk) with positive signs

and in a complementary manner, although not in a simple multiplicative form. This

agrees with economic intuition, and is also found in the Structural model.

39CES utility functions are ubiquitous in the gravity literature, while CES production functions (as

well as their linear, Cobb-Douglas or Leontief special cases) are equally common in international and

macroeconomics. We use a generalized CES function which further relaxes standard constraints on its

coefficients.
40In principle, the CES-based formulation is not an explicit interpretation of our Flexible NN (c.f.

imperfect inner functions’ fits) but, strictly speaking, a different model. Hence, the overall performances

of this new formulation and the Flexible model or its original symbolic interpretation are not cleanly

comparable.
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Table 5: Interpretation by Symbolic Regression with CES restriction, best Flexible model

Model specification

R2 IS R2 OOS

lnXij = lnG+ fMi + fSj + lnφij + ξXij 0.66 0.67

Composition

Estimated approximations Symbolic form

Function, f̂(z,θ) Arguments, z Function, f̃(z,ϑ) R2 IS MSE IS

f̂M (·) Xi,
∑

k f̂
M
φY (·),

∑
k f̂

M
φX(·) ϑ1 ln(ϑ10+ϑ11z1ϑ20+ϑ21z2

) + ϑ3z3 0.96 0.15

f̂S (·) Yj ,
∑

k f̂
S
φX(·),

∑
k f̂

S
φY (·) ϑ1 ln(ϑ10+ϑ11z1ϑ30+ϑ31z3

) + ϑ2z2 0.95 0.21

ln f̂MφX(·), ln f̂SφX(·) φ̂kj , Xk ln(ϑ0(ϑ10z
ϑ11
1 + ϑ20z

ϑ21
2 )ϑ1) 0.90 664.83

ln f̂MφY (·), ln f̂SφY (·) φ̂ik, Yk ln(ϑ0(ϑ10z
ϑ11
1 + ϑ20z

ϑ21
2 )ϑ1) 0.96 118.91

Descriptive statistics Numeric form

Mean Mean Function, f̃(z, ϑ̂)

[St.Dev.] [St.Dev.]

−1.39 150.47, 16.95, 7.19 1.0055 ln( 0.0618+1.9559z1
11.7018+0.9271z2

) + 0.4388z3

[1.97] [790.89, 13.40, 7.22]

−2.05 149.71, 3.87, 19.61 0.9763 ln(0.7828+1.5192z1
7.5665+0.1926z3

)− 0.0435z2

[2.16] [771.65, 4.75, 14.17]

−30.53,−30.53 0.06, 355.45 ln(0.1986(6.4708z15.07461 + 0.1988z0.01622 )1.1231)

[80.24, 80.24] [0.18, 1259.07]

−37.17,−37.17 0.06, 345.01 ln(0.2979(0.0050z1.47481 + 0.2335z0.82342 )0.9847)

[57.90, 57.90] [0.18, 1222.06]

Notes: Number of observations for each component is 515345 in the training sample and 54355 in the testing sample (the latter sample is not used

separately for outer and inner functions). Number of epochs for each component is 1000. Bilateral accessibility term lnφij is taken as an exogenous

input. Parameter vectors θ and ϑ as well as input variable vectors z are component-specific. Time subscripts are omitted throughout. See text for

additional details on symbolic regression and CES specification.
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9 Conclusions

We constructed several gravity models for international trade based on a GNN framework,

producing results of both theoretical and empirical interest. Our Flexible NN models

avoid imposing the strong assumptions stemming from economic theory which are made

for Structural models, and even so they allow us to identify important empirical economic

relationships. In terms of IS fit, our preferred Flexible model (i) outperforms the best

Structural alternative, as well as (ii) outperforms the standard Fixed Effects model, while

not lagging far behind the NN-enhanced Fixed Effects model. In terms of generalization

to OOS, it maintains this strong performance (which turns out not to be the case for the

Structural model, and is by construction precluded for the Fixed Effects models).

In the process of fitting our Flexible model (as well as its Structural alternative), as

a by-product we obtain a model-consistent measure of bilateral accessibility for a broad

set of country pairs and years, which may be used in stand-alone studies. Additionally,

we produce bilateral accessibility measure utilizing a hybrid Fixed Effects model that

includes the corresponding term (also utilizing a NN approximation, similarly to other

models considered). The latter, relatively agnostic alternative may be useful to practical

economists interested exclusively in an accurate bilateral accessibility measure that con-

trols for time-varying exporter and importer country effects without explicit modeling of

supply and demand market characteristics.

Focusing on the models’ properties, we observe that the gravity equation’s components

such as supply and demand market characteristics as well as bilateral accessibility for

Structural and, especially, Flexible models are closely correlated with their Fixed Effects

benchmarks. Moreover, across all models considered the supply market capabilities com-

ponent contributes to explaining the disproportionate amount of variance, almost double

that of its demand market counterpart. A quantitatively dominant role of the bilateral

accessibility-mediated aggregate production term versus that of aggregate expenditures is

another asymmetry that suggests the leading role of the supply side of the market in our

results. An additional interesting observation is the asymmetry of bilateral accessibility

measures implied by our models (as well as their relatively small direct contribution to

explanatory performance).

Zooming deeper into our preferred Flexible model’s properties, we tried to interpret

its NN modules using the Symbolic Regression algorithm. Taking the outputs of SR and

to some extent relying on our intuition, we select a low-complexity collection of standard

mathematical functions (and their compositions) that successfully replicate the bulk of

our Flexible model’s predictive performance (and, presumably, its internal mechanics).

Interestingly, a symbolic interpretation of our estimated Flexible model obtained in this

way seems to reinvent and refine some of Structural model’s internal components such as

multilateral resistance terms, while outperforming the latter in IS and OOS predictions.

In addition to that, it also exhibits features that do not seem to have analogues in the

Structural model. For instance, the obtained functions representing bilateral accessibility-
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mediated aggregate production and expenditures are somewhat counter-intuitive. Thus,

we also consider their alternative specifications provided by a well-known CES func-

tion, which produces economically intuitive relationships between the input variables and

demonstrates an even higher explanatory performance.

As an illustration and a real-life check, we apply the assortment of our gravity models

to several specific economic events. The following findings are worth highlighting: (i) only

our preferred Flexible model as well as the Fixed Effects model with bilateral accessibility

term demonstrate a more or less steady improvement in accessibility over time, which

agrees with common economic sense; (ii) during the 2008–2009 financial crisis and the

ensuing Great Recession, none of the models exhibit a discernible aggregate shock to

bilateral accessibility (even if gravity equations’ residuals are used as a measure of effective

accessibility); (iii) during the European Union enlargement period of 2004–2013 all of our

models show, in line with economic sense, an improvement in bilateral accessibility, which

is especially pronounced for the Structural and Fixed-Effects-with-bilateral-accessibility

models.

The flexibility and ease of use of NNs will, in our opinion, lead to more and more

demand for interpretation of their inner workings. On the theoretical and methodological

side, it seems promising to push further the automatic approach to NN interpretation

taken in this paper. With a more applied agenda in mind, it can be fruitful to further

study the results produced by our interpretation of the NN-based gravity model, and to

consider their potential contributions to new theoretical developments in this area. On

the empirical side, the new bilateral accessibility measures constructed here may prove to

be advantageous for the practice of international economics and trade.
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A Data details

A.1 Variables

Table 6: Variable definitions

Variable Definition

contig 1 for contiguity

gdp GDP (current US$)

gatt 1 if GATT/WTO member

comlang off 1 for common official or primary language

comlang ethno 1 if a language is spoken by at least 9% of the population in both countries

comcol 1 for common colonizer post 1945

col45 1 for pairs in colonial relationship post 1945

distw weighted distance (pop-wt, km)

tdiff nb of hours difference between ex and im

heg o 1 if origin is current or former hegemon of destination

heg d 1 if destination is current or former hegemon of origin

colony 1 for pair ever in colonial relationship

curcol 1 for pair currently in colonial relationship

comcur 1 for common currency

comrelig common religion

fta wto 1=RTA

txg fob usd Goods, Value of Exports, Free on board (FOB), US$
tmg cif usd Goods, Value of Imports, Cost, Insurance, Freight (CIF), US$

Notes : sources are Head and Mayer (2014) and IMF.

A.2 Sources

CEPII Gravity Dataset: gravity estimation dataset including trade, GDP, population,

trade agreements (224 economies, 1948 to 2016 period, bilateral).

Source: Head and Mayer (2014), https://sites.google.com/site/hiegravity/,

http://www.cepii.fr/CEPII/en/bdd modele/bdd.asp

Directions of Trade Statistics: country and area distribution of countries’ exports and

imports by their partners (139 economies, 1948 to 2020 period, bilateral).

Source: International Monetary Fund, https://www.imf.org/en/Data
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B Full estimation results

Table 7: Estimation results, all models from Structural and Fixed Effects classes

Model L Nφ NM , NS NM
φX , NM

φY , NS
φX , NS

φY Params R2 train R2 test

Structural 1 20 - - 382 0.53 0.51

Structural 1 50 - - 952 0.50 0.55

Structural 1 100 - - 1902 0.44 0.53

Structural 2 20 - - 802 0.46 0.53

Structural 2 50 - - 3502 0.45 0.49

Structural 2 100 - - 12002 0.46 0.52

Structural 3 20 - - 1222 0.49 0.54

Structural 3 50 - - 6052 0.47 0.53

Structural 3 100 - - 22102 0.46 0.53

Structural 4 20 - - 1642 0.48 0.53

Structural 4 50 - - 8602 0.43 0.46

Structural 4 100 - - 32202 0.46 0.52

FEs (t, i, j) - - - - 431 0.54 -

FEs (t× i, t× j) - - - - 24617 0.62 -

FEs+BA (t× i, t× j) 1 20 - - 24998 0.74 -

FEs+BA (t× i, t× j) 1 50 - - 25568 0.75 -

FEs+BA (t× i, t× j) 1 100 - - 26518 0.75 -

FEs+BA (t× i, t× j) 2 20 - - 25418 0.75 -

FEs+BA (t× i, t× j) 2 50 - - 28118 0.76 -

FEs+BA (t× i, t× j) 2 100 - - 36618 0.77 -

FEs+BA (t× i, t× j) 3 20 - - 25838 0.74 -

FEs+BA (t× i, t× j) 3 50 - - 30668 0.76 -

FEs+BA (t× i, t× j) 3 100 - - 46718 0.78 -

FEs+BA (t× i, t× j) 4 20 - - 26258 0.75 -

FEs+BA (t× i, t× j) 4 50 - - 33218 0.77 -

FEs+BA (t× i, t× j) 4 100 - - 56818 0.78 -

Notes: Number of observations for each model is 515345 in the training sample and

54355 in the testing sample. Number of epochs for each model is 1000. “-” stands for “not

applicable”. See text for additional estimation details.
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Table 8: Estimation results, all models from Flexible class

Model L Nφ NM , NS NM
φX , NM

φY ,NS
φX , NS

φY Params R2 train R2 test

Flex (×) 1 20 10 - 484 0.23 0.14

Flex (×) 1 50 20 - 1154 0.29 0.21

Flex (×) 1 100 50 - 2404 0.28 0.13

Flex (×) 2 20 10 - 1124 0.59 0.59

Flex (×) 2 50 20 - 4544 0.34 0.36

Flex (×) 2 100 50 - 17604 0.32 0.16

Flex (×) 3 20 10 - 1764 0.56 0.50

Flex (×) 3 50 20 - 7934 0.46 0.39

Flex (×) 3 100 50 - 32804 0.06 0.04

Flex (×) 4 20 10 - 2404 0.59 0.57

Flex (×) 4 50 20 - 11324 0.61 0.60

Flex (×) 4 100 50 - 48004 0.57 0.58

Flex (NN to R) 1 20 10 10 564 0.54 0.57

Flex (NN to R) 1 50 20 20 1314 0.54 0.58

Flex (NN to R) 1 100 50 50 2804 0.55 0.45

Flex (NN to R) 2 20 10 10 1424 0.62 0.63

Flex (NN to R) 2 50 20 20 5544 0.33 0.37

Flex (NN to R) 2 100 50 50 23104 0.45 0.42

Flex (NN to R) 3 20 10 10 2284 0.64 0.64

Flex (NN to R) 3 50 20 20 9774 0.65 0.65

Flex (NN to R) 3 100 50 50 43404 0.64 0.64

Flex (NN to R) 4 20 10 10 3144 0.64 0.65

Flex (NN to R) 4 50 20 20 14004 0.61 0.62

Flex (NN to R) 4 100 50 50 63704 0.62 0.63

Flex (NN to R+) 1 20 10 10 564 0.63 0.63

Flex (NN to R+) 1 50 20 20 1314 0.57 0.57

Flex (NN to R+) 1 100 50 50 2804 0.58 0.59

Flex (NN to R+) 2 20 10 10 1424 0.63 0.64

Flex (NN to R+) 2 50 20 20 5544 0.61 0.61

Flex (NN to R+) 2 100 50 50 23104 0.55 0.56

Flex (NN to R+) 3 20 10 10 2284 0.57 0.57

Flex (NN to R+) 3 50 20 20 9774 0.64 0.64

Flex (NN to R+) 3 100 50 50 43404 0.54 0.53

Flex (NN to R+) 4 20 10 10 3144 0.53 0.44

Flex (NN to R+) 4 50 20 20 14004 0.66 0.65

Flex (NN to R+) 4 100 50 50 63704 0.68 0.68

Notes: Number of observations for each model is 515345 in the training sample and

54355 in the testing sample. Number of epochs for each model is 1000. “-” stands for “not

applicable”. See text for additional estimation details.
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C Symbolic Regression illustration

Table 9: Symbolic Regression results, illustration
Complexity MSE Score Functional form

1 4.69454 0.00E+00 -1.90094

2 4.675339 4.10E-03 inv(-0.5007871)

4 2.436301 3.26E-01 log(Abs(x1)) - 2.6198666

6 1.227358 3.43E-01 log(Abs(x0/x2)) - 1.1418222

7 0.987196 2.18E-01 inv(-0.48061988) + log(Abs(x0/x2))

8 0.870141 1.26E-01 log(Abs(inv(inv(0.012780067*x0 + 0.012780067*x1))))

9 0.866631 4.04E-03 inv(-0.48061988) + log(Abs((x0 + 0.27159384)/x2))

10 0.359099 8.81E-01 log(1.0233755*Abs(x0/(x2 + 2.4021518))) - 1.5363793

12 0.254029 1.73E-01 log(Abs((x0 + 0.20765327)/(0.34836403*x2 + 0.69086415))) - 2.4887078

13 0.243078 4.41E-02 log(Abs((x0 + 0.27159384)/(0.39762166*x2 + 0.8343353))) - 2.4887078

14 0.239832 1.34E-02 log(Abs((x0 + 0.16599981)/(1.0676638**x2 + 0.17757954*x2))) - 2.3656318

15 0.22983 4.26E-02 log(1.0233755**re(x1)*Abs((x0 + 0.23992212)/(x2 + 2.4021518))) - 1.5363793

16 0.221448 3.72E-02 log(0.9678089*1.0335835**re(x1)*Abs((x0 + 0.3486238)/(x2 + 2.4686007))) - 1.651166

17 0.221448 9.03E-08 log(0.9702488*1.0335946**re(x1)*Abs(x0 + 0.34837505)/(Abs(x2) + 2.4677477)) - 1.6536945

19 0.192199 7.08E-02 log(Abs(Abs(x0 + 0.1795876)/(0.3598067**x1*x0 + 0.31959492*x2 + 0.60487235))) - 2.4887078

20 0.169029 1.28E-01 log(Abs((x0 + 0.16601108)/(0.35681313**x1*x0 + 1.0649966**x2 + 0.17763309*x2))) - 2.3653913

Notes: The explained variable is ln(Sj,t), the optimization criterion is MSE loss. In the output, “Complexity” column contains total complexity of operators,

constants and explanatory variables used in the function specification; “MSE” column contains Mean-Square Errors; “Score” column contains an improvement

in MSE relatively to additional complexity costs, and is measured as − ln
Ä

MSE2/MSE1

Complexity2−Complexity1

ä
; “Functional form” column contains functions selected by the

algorithm in a symbolic format.
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