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Abstract

The modeling of multivariate time series in an agnostic manner, without assump-
tions about underlying theoretical structure is traditionally conducted using Vector
Auto-Regressions. They are well suited for linear and state-independent evolution.
A more general methodology of Multivariate Recurrent Neural Networks allows
to capture non-linear and state-dependent dynamics. This paper takes a range
of small- to large-scale Long Short-Term Memory MRNNs and pits them against
VARs in an application to US data on GDP growth, inflation, commodity prices,
Fed Funds rate and bank reserves. Even in a small-sample regime, MRNN signif-
icantly outperforms VAR in forecasting out-of-sample. MRNN also fares better in
interpretability by means of impulse response functions: for instance, a shock to
the Fed Funds rate variable generates system dynamics that are more plausible ac-
cording to conventional economic theory. Additionally, the paper shows how, due
to its inherent non-linearity, MRNN can discover (in an unsupervised manner) dif-
ferent macroeconomic regimes. Utilizing its state dependence, MRNN may also be
a useful tool for policy simulations under practically relevant economic conditions
(such as Zero Lower Bound).
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1 Introduction
Artificial Neural Networks are mathematical models for pattern extraction and recogni-
tion, a task they achieve by passing their inputs through a series of non-linear transfor-
mations and mapping them to targeted outputs; hence the term Deep Learning. Over
the last several years this machine learning approach demonstrated impressive progress
in image, text/sound and video recognition. Success in image processing became possible
due to Convolutional Neural Networks that work well for spatial data. Success in text
and sound processing was made to a large extent due to Recurrent Neural Networks that
work well for sequential data. This paper investigates ANNs applicability to multidimen-
sional time series data that are encountered in economics, naturally focusing on the RNN
family, and on its Long Short-Term Memory member more specifically.

Recurrent Neural Network maintains within its network the connections that look back
in time. When processing sequential data, this allows RNN to account for a relatively
distant history, to keep track of the context, and to handle data of multiple frequency
or scales. For example, in a natural language processing application within the context
of zoology-related words such as “cat” or “ears” an RNN after encountering the word
“French” would predict a high probability of encountering word “bulldog” next, but within
the context of gastronomy-related words such as “bread” or “butter” it would predict
instead a high probability of “baguette” coming next.

In this paper we are interested in agnostic dynamic statistical modeling that does
not rely on “structural” restrictions stemming from economic theory. Traditionally in
economics this is implemented using Vector Auto-Regressions, a simple time-series model
that we use as a benchmark. On the other hand, LSTM Multivariate Recurrent Neural
Network fulfills the same role, additionally allowing for (i) highly non-linear relationships,
as well as (ii) state-dependent dynamics in the data. In fact, a VAR model can be viewed
as a special case of MRNN.

The data set we use here comprises GDP growth, inflation, commodity prices, Fed
Funds rate, and bank reserves for the United States since 1959 (at monthly frequency,
after the aggregation/disaggregation procedures described in the text).

In our exercise MRNN architectures of varying depth (from 1 to 3 hidden layers) and
width (from 5 to 1000 units per layer) are considered. In the case of large-capacity NNs,
we allow for substantial redundancy, since available regularization techniques such as
dropout prevent overfitting quite effectively. MRNN is trained using mini-batch gradient
descent. VAR is estimated by OLS, trying various lag lengths. In both cases, the process
of parameter learning is guided by prediction performance on the validation sub-sample.

Basically, we run a genuine horse-race between VAR and MRNN, providing two models
with the same data sets and letting them use the data in the most effective way their
structure allows. Then we compare the fruitfulness of the two modeling approaches.

Our preferred LSTM MRNN architecture is not very deep, comprising 2 hidden layers
with 820 units upstream and 660 units downstream. VAR specification we ended up with
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comprises 3 lags.
This paper’s approach is rooted in modern machine learning that focuses on predicting

data out-of-sample, as opposed to more traditional econometrics that deals with fitting
data in-sample. Because of this, and also for the reasons of practical interest, the first,
quantitative domain for comparing two modeling methods is prediction performance. Our
LSTM MRNN outperforms VAR in prediction accuracy on the testing sub-sample (i.e.,
in generalization) by about 8%, which amounts to 1% confidence in a formal statistical
test comparing the two.

The second, qualitative domain is related to an aspect of model interpretation that is
revealed by impulse responses. These are a standard exercise for VARs, and in this paper
we try out a simple procedure of their implementation for MRNNs. To help identify causal
effects of a shock on current and future responses of the variables, we impose a recursive
ordering on variables’ contemporaneous interrelationships. Specifically, we examine the
commonly considered situation of a transitory increase in the Fed Funds rate, and verify
which of the two models behaves more in line with economic intuition.

It turns out that following such a monetary tightening, the reactions produced by
MRNN are arguably more plausible than those produced by VAR. For the output growth,
VAR implies an initial acceleration, which is followed by deceleration later. MRNN im-
plies deceleration unambiguously. As far as inflation rate is concerned, VAR implies its
unambiguous acceleration. MRNN is more nuanced, it implies an inflation deceleration
in the state of the world characterized by low growth, inflation and policy interest rates,
but an acceleration in the state of the world characterized by high growth, inflation and
policy interest rates.

Putting this into context, a pick-up in output growth in the wake of monetary contrac-
tion is hard to justify theoretically. A positive response of prices to monetary tightening
is also a theoretically controversial finding, which has been referred to as a “price puzzle”
in VAR literature (Sims, 1992; Uhlig, 2005), although some authors do offer variations
of Fisherian arguments to justify it (Cochrane, 2018). Thus, in order to exhibit response
dynamics that are more plausible, VARs usually require a careful introduction of addi-
tional theoretical (“structural”) identification restrictions. However, MRNN appears to
be capable of learning plausible reactions essentially from raw data, without the need to
impose any theoretical structure beyond a simple recursive ordering of variables.

Next, we move beyond the comparison of the two modeling approaches, and touch
upon MRNN interpretations and applications. First, some additional tools for anal-
ysis and interpretation. Apparently, MRNN has discovered in the data two different
macroeconomic regimes, one characterized by low inflation and interest rates, and an-
other characterized by high inflation and interest rates. Interestingly, it has done so
under a completely “hands-off” procedure, without any special modeler’s intervention
(such as explicitly specifying a regime-switching model).

Second, a real-life primer on policy simulation. Using the MRNN machinery for mod-
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eling conditional dynamics, we can examine the effect of monetary tightening in the
special circumstances when the Fed Funds rate is close to its Zero Lower Bound. In such
case, a monetary tightening shock has a relatively more negative effect on growth but
less negative, even slightly positive, effect on inflation rate than in the (closest to ZLB)
macroeconomic regime of low growth, inflation and policy rates.

Lastly, it is worth noting that we use a fairly small data set: just 59 years of monthly-
frequency data on 5 economic variables. The parameterizations of our two models are
quite rich: VAR comprises 80, while MRNN comprises 6698440 parameters. The conven-
tional attitude is skeptical about the reliability of statistical models in such situations,
especially with regard to “data-hungry” NN architectures. However, there are theoretical
arguments why NNs effective capacity is in practice substantially lower than what a raw
parameter count suggests (see the main body); this point is indirectly supported by strong
performance of our MRNN in out-of-sample predictions. In any case, we attempted a data
augmentation exercise as one way to synthetically expand the limited data set; it did not
seem to bring any benefit though (more details are available in Appendix §C).

2 Literature
Artificial Neural Networks and Deep Learning is a very rapidly advancing area of knowl-
edge. Excellent textbook treatment is available in a still relevant Bishop (2006), as well
as in a less formal but more up-to-date Goodfellow et al. (2016). A very broad review is
available in Schmidhuber (2015), a good review with an eye on applications to Natural
Language Processing is Goldberg (2016), a review of Recurrent Neural Networks if offered
in Lipton et al. (2015).

Important ANN architectures include Feed Forward Neural Networks that were his-
torically first (single-layer due to Rosenblatt, 1958; multi-layer going back to Ivakhnenko
and Lapa, 1965), Convolutional Neural Networks used for image recognition (LeNet intro-
duced by LeCun et al., 1998; AlexNet by Krizhevsky et al., 2012; GoogLeNet by Szegedy
et al., 2014), Recurrent Neural Networks used for text/sound processing (Elman, 1990).
Here we focus on the latter.1

Recurrent Neural Network forms a network that loops to itself, which allows to ac-
count for recent history when processing sequential data. Specifically, we focus on Long
Short-Term Memory variation of RNN, which has the facilities to prevent the problem of
vanishing/exploding error gradients used in the “back-propagation through time” algo-
rithm (Hochreiter and Schmidhuber, 1997b).

Apart from theoretical existence results regarding accurate approximation (Cybenko,
1989; Hornik et al., 1989; also see Kolmogorov, 1957; and Arnold, 1957), there is still

1Interestingly, according to Liao and Poggio (2016), RNNs are biologically-plausible models of the
cortex—thus closing the loop back to seminal McCulloch and Pitts (1943), whose pioneering NN ideas
lied on the interface of biology and computer science.
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no consensus about the reasons for NN effectiveness. Possible explanations come from
statistical physics (Mehta and Schwab, 2014), geometry (Lei et al., 2018), information
theory (Schwartz-Ziv and Tishby, 2017), Bayesian statistics (Patel et al., 2015; Polson
and Sokolov, 2017; Friston et al., 2018). Arguably, an important role is played by clever
training and regularization techniques (such as Hinton and Van Camp, 1993; Hochreiter
and Schmidhuber, 1997a; Srivastava et al., 2014; Zaremba et al., 2015; Mandt et al., 2017;
and many others).

Results on consistency, convergence rates, asymptotic normality for neural network
estimation are still being refined, contributions range from pioneering White (1989) as
well as Chen and White (1999) to very recent Bauer and Kohler (2019), Schmidt-Hieber
(forthcoming) and Farrell et al. (2019). Also see Kuan et al. (1994) for early analysis
specific to RNNs, as well as Chen (2007) for an excellent treatment of sieve estimation.

Besides well-known practical applications, ANNs gain wide usage in natural science
and mathematics. For instance, RNNs have been successfully applied to high-dimensional
chaotic systems (Jaeger and Haas, 2004; Vlachas et al., 2018; Pathak et al., 2018). NNs
also found application in cryptography (Maghrebi et al., 2016; Cagli et al., 2017), and
even to data from geometry and physics that is relevant to string theory (He, 2017).

Economics is also not lagging behind. Pioneering papers dealt with macroeconomic
forecasting (Swanson and White, 1997; Chen et al., 2001) as well as financial asset pricing
and forecasting (Hutchinson et al., 1994; Swanson and White, 1995; White and Racine,
2001). More recently, ANNs have been used for estimation of causal relationships (Hart-
ford et al., 2016; Farrell et al., 2019), auction design (Dütting et al., 2017), asset pricing
and risk management (Heaton et al., 2016a; 2016b; Sirignano, 2016; Feng et al., 2018; Gu
et al., 2018).

Considering applications to sequential data, a good source is Graves and Schmidhuber
(2009), who use multidimensional LSTM RNN for handwriting recognition. A more recent
paper is Goel et al. (2016), with their application of LSTM to multivariate time series
from aviation industry. One application to sequential data from the field of finance is
Dixon et al. (2018), although instead of RNN the authors use a simpler FFNN with
lagged explanatory variables embedded into an input vector.

As a benchmark for comparison, we rely on Vector Auto-Regressions. Loosely speak-
ing, they combine Auto-Regressive Integrated Moving Average models (Box and Jenkins,
1970) and models comprising systems of equations (Theil, 1954; Zellner, 1962; Zellner
and Theil, 1962). In economics, this approach was popularized by Sims (1980). Thanks
to their simplicity, VARs are still extensively used. A recent review of VAR and time
series analysis more generally is available in Stock and Watson (2017); detailed reviews of
the so-called structural VARs are offered by Ramey (2016) as well as Stock and Watson
(2016); a textbook exposition is offered in Kilian and Lütkepohl. (2017).

In this paper we apply MRNN and VAR models to macroeconomic data from the
United States, with an eye on forecasting and policy analysis. Relevant references are
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provided in the text sections where these applications are discussed in detail.

3 Methodology

3.1 Framework
First, let us clarify some of the terminology used going forward. We divide the whole
universe of Artificial Neural Network models into different architectures (or specifications),
and we divide each architecture into its different trained instances.

Given an architecture, the process of hyperparameter tuning (a kind of meta-optimiza-
tion) defines the parameters ruling the optimization process.2 Then, optimization, or
learning, algorithm executes the model’s parameter training (as opposed to estimation
in more traditional statistical settings). Next, regularization techniques help with the
trained model’s parameter refinement (note that optimization and regularization are often
conducted in an alternating manner). Lastly, model selection means: (a) for a specific
architecture, the choice among trained instances of the best one; and/or (b) between
different architectures, the selection of the best one.

3.1.1 Architecture

Artificial Neural Networks, or just nets, are inspired by biological neural networks: units
(nodes, cells or “neurons”) have connections (edges or “axons”, “synapses” and “den-
drites”) to other units, and they perform complex non-linear computations by transmit-
ting signals from one to another. Mathematically, ANN is a model defined by the following
system of equations (or architecture):

h1 = g1 (b1 +W 1x) ,

h2 = g2 (b2 +W 2h1) ,

· · ·
hM = gM (bM +WMhM−1) ,

ŷ = gM+1 (bM+1 +WM+1hM) , (1)

where x ∈ RKx is a Kx-dimensional input vector; bm ∈ RNm and Wm ∈ RNm×Nm−1 are
parameters (biases and weights, respectively); gm(·) are activation functions such that
gm : RNm 7→ RNm ; hm(·) are outputs of hidden layers; with hidden layers m ∈ {1, . . . ,M}
and hidden units Nm ∈ N+ (keeping N0 := Kx); as well as ŷ ∈ RKy is the output vector
aiming to predict the value of a random variable y ∈ RKy , with ξ being the prediction
error,

y := ŷ + ξ. (2)
2Although sometimes hyperparameters are understood as also including the details of the architecture

itself.
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In this paper, Kx := K ∈ N+, and Ky := K ×H with H ∈ N+ (in the simplest case, H
just equals 1).

The above system can be more compactly expressed as a composition of functions

ŷ = gbWM ◦ · · · ◦ gbW1 (x), (3)

where we used the notation

gbW
m (x) := gm (bm +Wmx) . (4)

Basically, the network passes the incoming data x through several stages of non-linear
(semi-linear) transformations, and aims to predict some target y. One can think of gm(·)
as units, and of Wm as connections.

For the time-series setup, we are using a particular type of ANN that is known as (Mul-
tivariate) Recurrent Neural Network, in particular the specification called Long Short-
Term Memory.3 It specializes the general model along the following lines. First, random
variables as well as state variables are time-indexed. Second, the input variable is just a
lagged variable that is being predicted by the output, xt := yt−1. Third, gm,t(·) takes a
special form (for readability, omitting the layers’ subscripts m throughout):

ht = ot ⊙ tanh(ct),

ct = f t ⊙ ct−1 + it ⊙ tanh(bc +W ch−1,t +U cht−1),

ot = σ(bo +W oh−1,t +U oht−1),

it = σ(bi +W ih−1,t +U iht−1),

f t = σ(bf +W fh−1,t +U fht−1); (5)

where ht ∈ RN is in this specification interpreted as a cell hidden state vector (more
precisely, due to the readability caveat above, ht stands for hm,t, and h−1,t denotes hm−1,t,
while h0,t := xt); ct ∈ RN is a cell memory state vector; it ∈ RN , f t ∈ RN and ot ∈ RN

are an input gate, forget gate and output gate activation vectors, respectively; and with
b· ∈ RN , W · ∈ RN×N−1 , and U · ∈ RN×N being parameters.4

Introduction of state vectors allows the time-series models to condition on recent
historical dynamics. It may be helpful to think of LSTM network as a kind of non-linear
state-space model (that are very easy to work with due to Kalman-Bucy filter as described,
for example, in Hamilton, 1994).

3.1.2 Mechanics

An important theoretical result about NNs is that their formulation is general enough to
represent any desired function. Given at least one hidden layer and a sufficiently large but

3In the specification’s title, “long memory” stands for slowly-changing parameters of the ANN, “short
memory” for recurrent inputs to the hidden layer from its past outputs, and “long short-term memory”
for the amendment of recurrent connections with additional parametric network structures.

4Symbol ⊙ denotes element-wise multiplication (also called Hadamard product).
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finite number of units, this is feasible by the arguments of the universal approximation
theorem (Cybenko, 1989; Hornik et al., 1989; also see the representation theorem due to
Kolmogorov, 1957; and Arnold, 1957).5 A useful implication is NNs’ ability to account
for non-linearity of the empirical phenomena being modeled.

Size (or capacity, parameterization) of a NN is determined by its depth, that is the
number of hidden layers M , and its width, that is the number of units in each layer
{N1, . . . , NM}. NNs are called deep if they have more than one hidden layer, otherwise
they are called shallow.

The above theory requires a large enough NN, but it does not provide us with the
formal method for setting a sufficient size and structuring the architecture (and, more
generally, for learning the required parameters).6 Our guiding principle is given by what
is regarded as the scientific method: successful prediction on the new data. A theory or
model is good only if it generalizes the existing facts in a way that is useful in predicting
yet unobserved phenomena.

From the theory, we know that an insufficiently sized NN will underfit the data: the
standard statistical fit measures will demonstrate poor performance, even on the observed
sample that is used for training (“in-sample”). At the other extreme, a too large NN may
overfit the data: statistical fit measures will demonstrate strong performance on the
observed sample that was used for training, but will collapse when the model is tested on
the previously unobserved data (“out-of-sample”). In the machine learning literature, we
say about the latter case that the NN has memorized the data without learning its high-
level structure and thus acquiring the ability to generalize the accumulated knowledge.

Hence, the strategy commonly adopted in the literature is extensive exploration that
amounts to experimenting with different model specifications, using as a criterion that
guides the exploration the predictive performance of the specifications considered. Usu-
ally, the predictive fit is measured on a sample reserved exclusively for such validation
purposes (and that is separate from the training and testing samples).

One practical approach is to start with a generously sized network, allowing for redun-
dancy and erring on the side of a too many parameters, and then restricting the excessive
depth/width using the regularization methods described below.7 Another practical rule
of thumb is that deep architectures tend to be easier and cheaper to train, hence their
popularity even though in theory having just one hidden layer is sufficient.

5Formally, a function that is Borel measurable and defined over finite-dimensional spaces (e.g., con-
tinuous on a compact subset of Rn) can thus be approximated with arbitrary precision.

6Technically, the above theoretical result is not constructive, it is only about the existence.
7Existence of effective regularization methods is the reason why overfitting is less problematic than

underfitting (this asymmetry is a little reminiscent of inefficiency versus inconsistency in the practice of
estimating, e.g., linear regression models, hence the prudent preference for including rather too many than
too few explanatory variables or “correcting” the consistent but inefficient estimates’ variance-covariance
matrix). Also, allowing for redundancy improves NN reliability and makes it easier to train.
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Regularization: The aim of regularization is to improve generalization and reduce
overfitting of a given model. The leading motive is Occam’s razor principle: the heuristic
postulate that good scientific theories are parsimonious. Regularization downplays the
weight of the training sample in parameter learning by introducing additional information
and constraints, which tends to prevent the fitting to noise and memorization at the
expense of generalization.

The recent literature provides many effective regularization techniques. Some of the
most popular methods are explicitly using the idea that good models should be invariant
to “small” perturbations.

Dropout adds noise to the NN architecture (Srivastava et al., 2014; also see Zaremba
et al., 2015). During the training process, it randomly drops from the model some units
and connections (usually in the hidden layer, but possibly in the visible one too). This
is a very simple yet highly effective regularization method. It can be loosely motivated
as mimicking the model averaging (as the authors of Srivastava et al., 2014, originally
suggested) as well as estimation under LASSO/sparsity or Ridge constraint (Wager et al.,
2013).

Data augmentation adds noise to the NN inputs (the idea can be traced back to
Sietsma and Dow, 1991).8 This expands the data set with synthetic data comprising
the originals that are contaminated with some (usually, Gaussian/white) noise. In such
case, effectively we are dealing with a kind of background noise. But noise can also be
added exploiting the structure of the data at hand. For visual data, it involves image
transformations such as translations, rotations, scaling, cropping, color perturbations
(LeCun et al., 1998; Simard et al., 2003; Krizhevsky et al., 2012). For audio data, it
involves sound transformations such as frequency, tempo and speed perturbations (Jaitly
and Hinton, 2013; Cui et al., 2015; Ko et al., 2015).

Optimization and tuning: NN models are very costly to work with: usually they
are truly high-dimensional and have a large number of parameters; they have non-linear
structure and non-convex objective functions; they often involve processing very large
datasets. Thus, careful design of the whole computational approach is of paramount im-
portance. This paper leaves out the discussion of the hardware and software components
(necessary resources such as Graphics Processing Units and machine learning libraries are
now widely available), and focuses instead on the algorithmic component that comprises
data handling, minimization algorithms, meta-optimization of the latter, etc.

We briefly present some of the techniques that proved to be useful in training NN
models. First and foremost, their aim is to speed up training and reduce computational
costs.9 However, many of the below techniques involve replacing a true algorithm or object

8Data augmentation is often viewed intuitively as an addition of carefully perturbed synthetic data to
the existing data set. Formally, however, it is a regularization method that encourages fitting to relevant
features of the data rather than to irrelevant noise.

9Hence, such techniques are often just practical tricks that are employed only out of necessity and
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with some reasonable approximation, and these techniques’ effectiveness is possible only if
they (or the respective downstream algorithms) are invariant to perturbations and robust
to random noise that necessarily show up. In other words, along the way these speed-up
techniques also act as regularizers.

The loss minimization algorithms in the existing literature are usually variations of a
standard gradient descent with some stochasticity added (for an early source, see Robbins
and Monro, 1951; for a Bayesian interpretation see Mandt et al., 2017).

The granularity of data inputs used for gradient computations and parameter updates
vary from utilizing the full data set (“batch gradient descent”) to several (“mini-batch
gradient descent”) or single (“stochastic gradient descent”) randomly chosen block(s) of
observations (that is, training example(s)). Smaller batches prevent using the most effi-
cient computational tools and exhibit noisier convergence; but such built-in stochasticity
helps avoiding local minima, hence works as a regularizer (see Wilson and Martinez, 2003).

Data standardization is useful in many statistical learning problems, but in the context
of NNs it is even more critical. One development of the general standardization idea that
is tailored for NNs is separately standardizing the inputs to intermediate hidden layers
(“batch normalization”, see Ioffe and Szegedy, 2015).

Minimization algorithms make use of efficient ways for computing gradients that im-
prove upon the brute-force implementation of canonical chain rule (“backward propaga-
tion of errors”, or just “backpropagation”, see Rumelhart et al., 1986).

There are also methods used for ensuring minimization algorithms’ satisfactory con-
vergence, i.e. one that is fast and avoids bad local minima. These include clever ways of
updating parameters in the face of stochasticity inherent to minimization algorithms used:
the learning rate is high far from the minimum in order to ensure fast learning, but falls
as the minimum is approached to prevent overshooting (“learning rate decay”, see Rob-
bins and Monro, 1951; Welling and Teh, 2011); parameter updating maintains memory of
recent updates in order to keep improving in the promising direction (“momentum”, see
Bengio et al., 2012; Sutskever et al., 2013). Also, simple as it is, an outright termination
of the algorithm’s iterations well before the minimum is reached saves on computational
costs with little downside (“early stopping”, see Prechelt, 1997). Importantly, all of the
above methods contribute to regularization as well.

Many of the methods above have their own hyperparameters (random seeds, dropout
probability, learning rates, etc.). The hyperparameters’ initial values—and sometimes
modification schedules too—are also important choices to be made.

“Overparameterization”: A common question about NNs (e.g., see Zhang et al.,
2017; Belkin et al., 2018) is concerned with the fact that in overwhelming majority of
applications the number of NN parameters exceeds the number of training observations
by several orders of magnitude — what are the underlying mechanisms that allow NNs

computational resource constraints.
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with large explanatory capacity that fit arbitrarily accurately on the training sample also
to perform well in the test sample, i.e. to properly generalize?

Formally, the basic explanation is that all these parameters are not entirely free. For
instance, there are some trivial (as well as rather profound) symmetries and equivalences
in the space of NN weights (Chen et al., 1993; Kurková and Kainen, 1994). Furthermore,
parameters of properly trained NNs turn out to lie in a lower-dimensional subspace (see the
“noise stability” property of Arora et al., 2018; also refer to Hochreiter and Schmidhuber,
1997a, Hinton and Van Camp, 1993, for a related argument).

Fundamentally, it is often more useful to think about NNs non-parametrically. Thus,
identifiability of specific parameters is not even a relevant issue to consider, and instead
we are interested in higher-level objects: in model outputs and their characteristics (e.g.,
forecasts and uncertainty about them).

3.2 Data
Our raw data set comprises: Real GDP, seasonally adjusted annual rate, and GDP Price
Deflator, seasonally adjusted (both at quarterly frequency)10; Equal Weight Continuous
Commodity Index (at daily frequency); Effective Fed Funds Rate and Nonborrowed Re-
serves (at monthly frequency). Additional details are available in Appendix §A.

Daily frequency data are aggregated into monthly by averaging, while quarterly fre-
quency data are disaggregated into monthly using a linear state-space model (as in
Bernanke et al., 1997). Our interpolation procedure is described in Appendix §B.

Next, data are transformed as follows: Real GDP, GDP Deflator and Commodity
Price Index into month-over-month growth rates; Nonborrowed Reserves into monthly
differences. See Figures 6 and 7 in Appendix §A for visual representations of monthly-
frequency data prior and after the transformations, respectively.11 (Finally, to prevent
numerical complications, the training itself is done in terms of data series that are stan-
dardized to have a mean of 0 and a variance of 1.)

The resulting data set covers the time period from 1959:M02 to 2019:M06.

3.3 Implementation
We split those 60 years of monthly data into 3 sub-samples:

(i) training sample used for parameter learning (1959:M02 to 2011:M06);

(ii) validation sample used for adjusting the learning rate in order to prevent data mem-
orization (2011:M07 to 2015:M06);

10Seasonally adjusted data are used for simplicity, because ANNs’ treatment of seasonality in a small-
sample regime as here is an important research problem in its own right and deserves a separate study.

11Notice the effect of quantitative easing policy on Nonborrowed Reserves at the end of the sample
period.
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(iii) testing sample that the NN does not see until we are finished with learning and start
benchmarking NN’s usefulness (2015:M07 to 2019:M06).

Here we have sequential data, i.e. each observation is dependent on other observations
immediately prior to it. Hence, one training example includes several (specifically, 24)
consecutive observations: {yt−i}23i=0.

Predictions over the validation and testing sub-samples are made multiple steps ahead.
Non-linearity of NNs warrants direct—as opposed to iterated—forecasts for each point in
the prediction horizon.12 Each sub-sample is split in half and predictions are 24-steps-
ahead, thus reserving 2× 24 months for validation and 2× 24 months for testing.

We use the “golden-standard” mini-batch gradient descent, with 4 training examples
per batch. Then, 1 training epoch is composed of a full run through the training data
set, thus feeding the training examples for all possible t: {{yt−i}23i=0}629t=24.

Our NN has a general LSTM architecture introduced earlier. More specifically, NN
cells in the visible input layer take in the 5-dimensional data vector (so, K := 5) and pass
it on untransformed. The cells in the hidden layers use Rectified Linear Units (ReLU)
as the activation functions applied to their inputs. The cells in the visible output layer
apply simple linear transformations as activation functions on their inputs from the last
hidden layer. With the Mean Squared Error loss function ultimately used in our NN (i.e.,
L(y, ŷ) := (1/TK)

∑
(yt − ŷt)

ᵀ (yt − ŷt)), in this final visible layer we are effectively
just running Ordinary Least Squares regressions on the layer’s inputs. To produce direct
forecasts, the NN outputs a K ×H object [ŷτ+1, . . . , ŷτ+H ], with K = 5 and H = 24.

Within certain range, we try architectures of varying depth and width. The depth
ranges from 1 to 3 hidden layers. Due to forecast horizon length, the number of outputs
exceeds the number of inputs, hence we treat the width asymmetrically, varying it from
5 to 1000 neurons in the first hidden layer, but from 100 to 1000 in the last hidden layer
(if there are more than one layer).

The minimization algorithm used is “adaptive moment estimation”, or Adam (Kingma
and Ba, 2014). Each architecture is trained for 10 epochs, with a decaying learning rate.
Lastly, the dropout probability is set at 0.2.13

To sum up, our implementation recipe has four stages: (i) set hyperparameters (which
requires some tuning); (ii) define specification, train and regularize it; (iii) repeat the
previous step for a range of specifications; (iv) choose specification with the best training
fit.14

12The formal reason is non-commutativity: even with one hidden layer gbW1 (·) and independent
mean-zero prediction errors ξ, Et[yt+1] = Et[g

bW
1 (yt) + ξt+1] = gbW1 (yt), but already Et[yt+2] =

Et[g
bW
1 (gbW1 (yt) + ξt+1) + ξt+2] = Et[g

bW
1 (gbW1 (yt) + ξt+1)] ̸= gbW1 (Et[g

bW
1 (yt) + ξt+1]) = gbW1 (gbW1 (yt)).

See Tong (1990) for a theoretical analysis; also see Marcellino et al. (2006) for empirical comparison in
the context of linear models.

13Additional hyperparameter settings are available upon request.
14We do not use as a criterion for choosing the best NN specification the validation sample fit (because

our validation set is too small for that) or the best training epoch (because learning rate decay makes this
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3.4 Benchmark
For comparison, we use a standard Vector Auto-Regressive model. VAR model is defined
by the following vector-valued equation:

ŷt = a+A1yt−1 + . . .+ALyt−L, (6)

where yt−ℓ are lags of a K-dimensional random variable yt; while a ∈ RK and Aℓ ∈ RK×K

are parameters; with lag ℓ ∈ {1, . . . , L}; and ŷt on the left-hand side has the same
interpretation as before in equation (2), with the prediction error ϵt.

More compactly, for A := [A1, . . . ,AL] and xt := [yt−1; . . . ;yt−L], and following the
notation from (4), this becomes

ŷt = a+Axt = idaA(xt), (7)

with the identity function defined as

id(x) := x.15

From this perspective, it becomes clear that VAR can be seen as a restricted version
of a more general multivariate NN model (with MRNN and LSTM MRNN adding further
enrichments).

We apply this model to the data set described earlier. Thus, K = 5 again. We
split the sample the same way as before into training (1959:M02 to 2011:M06), validation
(2011:M07 to 2015:M06) and testing (2015:M07 to 2019:M06) sub-samples. Predictions
over the validation and testing sub-samples are made iteratively 24 steps ahead. Param-
eters are estimated by Ordinary Least Squares.

Importantly, we follow the “predictive” approach from above and choose the optimal
lag length L by comparing the predictive performance on the validation set. Such an
explicitly predictive approach differs from the more traditional lag selection practice in
VAR literature that is based on various information criteria: the latter also hopes to
achieve the generalization ability, albeit indirectly and implicitly. (In the interest of
transparency, below we also provide the results for the traditional approach: it selects
the lag length using Akaike Information Criterion, combining the training and validation
sub-samples together into a larger estimation sample.)

4 Results
This is the main section of the paper. Here we present the training results for all NN
models considered and select the best performing model. Then we demonstrate our pre-
ferred model’s capabilities: (i) its out-of-sample forecasting performance, and (ii) several
extraneous). Also, our search for the best model is based on trying many different architectures rather
than many different parameter starting values.

15In AR(1) terms, for zt := [yt; . . . ;yt−L+1], ζt := [ϵt; 0; . . . ; 0], d := [a; 0, . . . , 0] as well as D appro-
priately combining A, IK and 0K , we can write zt = d+Dzt−1 + ζt = iddD(zt−1) + ζt.
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practical ways of interpreting the workings of the NN “black box” (specifically, inspec-
tion of its steady states as well as computation of unconditional or conditional impulse
response functions).

4.1 All nets
After tuning the hyperparameters, we trained and regularized a range of architectures,
from a modest NN with just 1 hidden layer of 5 units to a fairly rich one comprising 3
hidden layers with 1000 units in each. Table 1 summarizes their fitting and prediction
performance, measured in terms of Mean Squared Errors for standardized series, over the
training, validation and testing samples.

Evidently, a lot of architectures demonstrate commensurate, potentially complemen-
tary performance.16 Moreover, notice that specifications with larger capacities not only
exhibit good training sample fit, but also do not necessarily underpeform in their testing
sample predictions — this corroborates the effectiveness of our regularization techniques.

4.2 Best net
4.2.1 Forecasting

We take the trained NN instance with the lowest training sample MSE as our preferred
NN architecture.

With the MSE of 0.5159, this turns out to be a not very deep specification featuring
2 layers, which contains 820 units upstream and 660 units downstream. Under the hood,
such a specification comprises 6698440 NN parameters in total (refer to equations 1 and
5):

• (820+820×5+820×820) + (820+820×5+820×820) +(820+820×5+820×820)

+ (820 + 820× 5 + 820× 820) = 2709280 parameters in the first hidden layer;

• (660+660× 820+660× 660) + (660+660× 820+660× 660) + (660+660× 820+

660 × 660) + (660 + 660 × 820 + 660 × 660) = 3909840 parameters in the second
hidden layer; and

• (120 + 120× 660) = 79320 parameters in the visible output layer.

The validation sample predictive fit is 2.2601 (multiple-steps-ahead, accuracy mea-
sured in MSE terms). This is worse than in some of the alternative trained architectures;
the minimum is 1.9798 for a 3-layered NN with 50, 50 and 880 units from top to bottom
layer. However, given that our validation sample is very small due to data limitations, it is

16Such a situation usually calls for ensemble averaging approaches. However, given that we are already
using dropout regularization, which effectively conducts a kind of model averaging, we will abstain from
additional mixing.

13



Table 1: Long Short-Term Memory Multivariate Recurrent Neural Nets, Prediction results

I II III
N1 Train. Valid. Test. N1-N2 Train. Valid. Test. N1-N2-N3 Train. Valid. Test.

Shape of L(·)
Max n/a 0.7569 2.5539 1.8698 n/a 1.032 3.4149 2.5604 n/a 6.7058 4.5366 3.2659
Average n/a 0.5763 2.2653 1.7086 n/a 0.6580 2.2253 1.6984 n/a 0.7029 2.2255 1.7151
Min n/a 0.5217 2.0958 1.6227 n/a 0.5159 2.0188 1.5958 n/a 0.5171 1.9798 1.5976
St.Dev. n/a 0.0402 0.1083 0.0514 n/a 0.0720 0.1288 0.0589 n/a 0.1378 0.2091 0.1094

Minimizers of L(·)
in Training 880 0.5217 2.2525 1.6479 820-660 0.5159 2.2601 1.6556 800-940-940 0.5171 2.1034 1.6938
in Validation 10 0.6914 2.0958 1.7619 30-400 0.6537 2.0188 1.6588 50-50-880 0.7699 1.9798 1.6779
in Testing 940 0.5319 2.2328 1.6227 760-520 0.5567 2.1574 1.5958 10-10-780 0.8333 2.1106 1.5976

Notes: Vertical panels I to III present the results for NNs of different depth, from 1 to 3 hidden layers, respectively.
For each depth, all architecture permutations are considered, with numbers of units chosen from the following sets:
{5, 10, 20, 30, . . . , 80, 90, 100, 120, 140, . . . , 980, 1000} for the first layer N1; {100, 120, 140, . . . , 980, 1000} for the last layer N2 in II
or N3 in III; and {min(N1, N3), ⌈N1+N3

2
⌉,max(N1, N3)} for the middle layer N2 in III. The rows present: descriptive statistics on the

shape of the loss function L(·) in the training, validation and testing sub-samples; the results for NNs minimizing L(·) in the training,
validation and testing sub-samples. Results are given in terms of MSEs (calculated for standardized series, averaged over variables
and time periods). Predictions are 1-step-ahead in the training sub-sample, but direct 24-steps-ahead in the validation and testing
sub-samples. Additional technical details about the implementation are provided in the main text.
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Table 2: Vector Auto-Regression, Prediction results

Criterion L Training Validation Training&Validation Testing
Validation 3 0.5203 1.8564 1.7934
AIC 11 0.5523 1.9198

Notes: The results are presented, in rows, for VARs with lag lengths L = 3

(selected basing on validation sample performance) and L = 11 (selected
basing on AIC). Estimation was done by OLS. MSEs (calculated for stan-
dardized series, averaged over variables and time periods) in the training,
validation and testing as well as combined training & validation sub-samples
are given. Predictions are iterated 24-steps-ahead in the validation and test-
ing sub-samples. Additional technical details about the implementation are
provided in the main text.

impossible to tell apart an underperformance of the specific NN instance and a peculiarity
of the chosen validation data sample.17

The testing sample was not available for our preferred NN at the training stage: its
predictive fit ended up being 1.6556 there. Many alternative NNs performed better, with
the minimum MSE being 1.5958 for a 2-layered NN with 760 top units and 520 bottom
ones.

We are going to compare our best NN with the benchmark model, Vector Auto-
Regression. Predictive performance on the validation sample suggested using 3 lags,
i.e. VAR(3). Such specification comprises 80 parameters in total (refer to equation 6):
(5+5×5+5×5+5×5). As can be seen from Table 2, VAR model’s in-sample performance
is on par with that of our preferred NN: the training sample MSE is 0.5203, and the
validation sample MSE is 1.8564. However, VAR underperforms out-of-sample: for the
test data, its MSE of 1.7934 is about 8% worse. More rigorously, Diebold and Mariano
(1995) test for forecast accuracy with the value of 4.68 favors MRNN at 1% confidence
level; modified Diebold and Mariano test that corrects size distortions (due to Harvey et
al., 1997) at 4.03 reaches the same conclusion. (We prefer the VAR(3) specification as a
benchmark; but in the interest of transparency, Akaike Information Criterion suggested
using 11 lags, the resulting VAR(11) model in Table 2 performs poorly out-of-sample, its
test-data MSE is 1.9198.)

Let us zoom closer into two models’ predictions on Figure 1. Neither of the two cap-
tures high-frequency movements, instead they are trying to pin down the movements in
conditional means. Failure to achieve the former, much more challenging task should not
be surprising: the time series in question are inherently noisy (just think of unpredictable
weather conditions), they are affected by many other factors beyond the 5-variable eco-
nomic system that is being modeled (think of housing market dynamics or global economic

17That is why we relied on the—longer—training sample’s fit for architecture choice.
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environment).
One point to keep in mind is that for most practical purposes, what matters is the

cumulative forecast over several periods. In such a situation, much of the high-frequency
noise cancels out. Moreover, at a monthly frequency even a small uniform improvement
in prediction accuracy can be very meaningful in cumulative sense.18

Another point pertains to our standardization convention. We conduct the modeling in
terms of standardized time series, each having the variance of 1, and weight them equally
in the mean-squared loss function. So, in the original scaling some of the forecasts on
Figure 1 may look farther off the target than they are in the standard-deviations space
that is important from the modeling perspective. E.g., NN’s (as well as VAR’s) Fed Funds
rate predictions are not as poor as they may seem in the original scaling.

Overall, the take-away is that, at least in our exercise, MRNN outperformed VAR in
out-of-sample prediction (and, thus, in generalization).

4.2.2 Steady states

Now we briefly investigate the limiting behavior of the system, which reveals some robust
features of the data and the typical scenarios in the evolution of economic variables. In
other words, how does the economy look on average, across many time periods?

Technically, a steady state (an equilibrium, or a “fixed point”) of a multivariate time-
series system is defined as some subset of the space that the system maps back to itself.
A stable steady state (attractive fixed point, or a “fixed-point attractor”) is a steady
state that, even after some small perturbation, the system will again converge to (instead
of diverging to somewhere else). Then, a region of convergence (“basin of attraction”)
is a neighborhood of a stable steady state that maps the outputs from its inputs in the
direction toward, and will eventually reach, this particular steady state. The stable steady
states characterize the asymptotic behavior of the economic system.

In the case of VAR, such investigation can be done by solving the system analytically
(or iterating it forward till convergence). For MRNN, we shall rely on numerical search
and simulations. Given that our MRNN is trained to predict no more than 24 steps ahead
(and because direct forecasts are known to be relatively noisy in practice), we would need
to relax the notion of a steady state.

Formally, we define a quasi steady state of function s : RK 7→ RK×H as any value y∗

such that ||s̄(y∗) − y∗|| ≤ η for some bound η > 0 and horizon H ∈ N+ with horizon-
average of s(y∗) denoted by s̄(y∗) := (1/H)s(y∗)1H ; where Euclidean norm ||x|| :=

(xᵀx)1/2 and function s(·) is either an MRNN system (1, 2 and 5) directly predicting H

steps ahead (here, H = 24), or a VAR model (6) iteratively predicting H steps ahead
(e.g., H → ∞). A conventional steady state satisfies the above definition for any η > 0

18Say, an improvement of merely 0.1 percentage point per month produces more than 1 percentage
point improvement in the case of GDP growth forecast on a 12-months horizon.
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Figure 1: Predictive performance.
Multiple-steps-ahead predictions of the MRNN (dots) and VAR (dashes)
models over the testing sample: first, period 2015:M07 to 2017:M06, and
second, period 2017:M07 to 2019:M06; with the starting points, 2015:M06 and
2017:M06, marked (by solid squares); together with the 2014:M07 to 2019:M06
sample data (solid lines).
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Table 3: Steady states

Model RGDP GDPDefl CommodPrice FedFunds NonborrowRes
ȳ 1.88 1.98 3.62 5.66 31.18
MRNN, low regime 1.44 1.12 7.31 4.18 3.95
MRNN, high regime 1.85 3.63 -0.14 5.84 8.26
VAR 1.87 1.91 3.87 5.35 39.17

Notes: Stable (quasi) steady state values are presented, in rows, for MRNN (low rates of
Real GDP growth, GDP Deflator inflation and Fed Funds regime, as well as high rates
of Real GDP growth, GDP Deflator inflation and Fed Funds regime); and also for VAR
with lag length L = 3; additionally on top, ȳ provides for reference the sample averages.
Variables, in columns, are Real GDP growth, GDP Deflator inflation, Commodity Price
inflation (all month-over-month, in percents, annualized); Fed Funds rate (level, in
percents, annualized); Nonborrowed Reserves change (monthly difference, in billions of
US dollars, annualized).

and all H ∈ N+. Since quasi steady state is a relatively weaker notion, a steady state is
always a quasi steady state.

Table 3 contains the results of the corresponding calculations. Naturally, VAR steady
state is close to the sample mean. However, MRNN has two stable steady states: first,
characterized by a combination of high growth, inflation and policy interest rates; and
second, with—relatively—low growth, inflation and policy interest rates. Mathematically,
existence of several steady states is a common situation in non-linear time-series models,
e.g. see Tong (1990). Intuitively, this result reveals that the NN has learned about the
presence of two different macroeconomic regimes, and has done so in an unsupervised
manner.

The region of convergence for VAR is the whole real hyperplane RK . For MRNN, the
region of convergence is a K-dimensional object that is computationally cumbersome to
inspect in detail; but this is a straightforward task for a handful of dimensions condi-
tionally on the rest. For example, take the low growth steady state: freezing all of the
variables at their steady state values, we find that an acceleration of Real GDP growth
from 1.44% to 2.12% or more sets the system on a trajectory that diverges to another,
high growth steady state.

4.2.3 Impulse responses

Time-series models can also be used for measuring system reactions to shocks, as well as
to conduct hypothetical policy simulations. For example, if commodity prices (think of
oil) jump sharply up, what would happen to other economic variables? Or how would the
economy at a particular macroeconomic juncture (think of deep recession or Zero Lower
Bound) fare when the Fed Funds rate is raised?
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Technically, impulse responses of a multivariate time-series system are defined as move-
ments (responses) of all variables once the equilibrated system receives a shock (impulse)
to one of the variables. In this paper, we are interested in single-period (also called
transitory) shocks.19

Unconditionally: The leading case that we consider is when the system is at its steady
state immediately before receiving the shock.

In VAR, the process works as follows. Given the covarying nature of the system
variables y, and thus of the shocks to these variables ξ, a correct way to generate a single
shock has to account for the covariance structure. Perhaps the simplest way of doing this
is using a Cholesky decomposition of the shocks’ variance-covariance matrix: Σ = LLᵀ,
where L is the resulting lower-triangular matrix. (Technically, this allows to identify
contemporaneous causal links between variables in our reduced-form VAR using recursive
identification restrictions.) As a result, it holds that ξ = Lε, given some fundamental
elementwise-orthogonal shock ε that has an identity variance-covariance matrix I.

Thus, a transitory shock to variable k at impulse time τ is cleanly injected by (i)
perturbing the k-th element of ε: ετ := ek, where ek is a column vector with, say, 1 in
row k and 0 in all other rows; and then (ii) adding the manufactured shock ξτ := Lετ

to the previously equilibrated system: yτ := y∗ + ξτ , where y∗ is a steady-state value.
Instantaneously in the same period τ , the shock percolates to the variables with non-zero
elements of lower triangular matrix L; from period τ + 1 onward, the whole system is
affected according to y’s law of motion. The impulse responses to a single-period shock
for horizon h ∈ {1, . . . , H} can be calculated analytically: we can write yτ+h = y∗+V hξτ ,
where y∗ := (IK −A1 − . . .−AL)

−1 a, and V i :=
∑∞

j=1 V i−jAj with V 0 := IK ; which
in turn gives us

∂yτ+h

∂εᵀτ
= V hL.20

Alternatively, they can be calculated numerically by simulating the evolution of the esti-
mated system (6).21

Unfortunately, in LSTM MRNN a similarly straightforward approach as above is not
applicable. Formally, utilizing the advantages of direct forecasts, we have [yτ+1, . . . ,yτ+H ] =

19We do not consider shocks that persist for an infinite number of periods (i.e., permanent shocks).
We also ignore potential asymmetry of responses and thus do not examine separately impulses in the
opposite directions.

20We used the general formula for a moving average representation yτ+h = (IK −A1 − . . .−AL)
−1

a+∑∞
i=0 V iξτ+h−i. It holds provided the operator A(B) :=

(
IK −A1B− . . .−ALB

L
)

is invertible, where
B is a backshift operator.

21In the case of VAR, to produce impulse responses we follow the same approach we took for multiple-
steps-ahead predictions earlier: iterating 1-step responses for 24 steps ahead (rather than directly calcu-
lating 24-steps-ahead responses). Direct estimation of impulse responses in this context is known as local
projections, following Jordà (2005). The equivalence of iterative VAR estimates and direct estimates
by local projections for these purposes has been shown by Plagborg-Møller and Wolf (2019); also see
Marcellino et al. (2006) for a related discussion.
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gbWM,τ ◦ · · · ◦ gbW1,τ (yτ ), with yτ := y∗ + ξτ if steady state y∗ is taken as a starting point.
Then the impulse response is given by expression

∂yτ+h

∂εᵀτ
=

∂ŷτ+h

∂gbWM,τ (·)
∂gbWM,τ (·)
∂gbWM−1,τ (·)

· · ·
∂gbW1,τ (·)
∂yᵀ

τ
L,

which is a highly non-linear functional that is conditional on the values of state variables.
Firstly, although cumbersome to deal with analytically, it is easy to evaluate numerically
using the trained NN, since all the necessary ingredients are readily available from back-
propagation procedure’s implementation at the time of training.22 Secondly, functions
gbWm,τ (·) are state-dependent: they comprise not only observed variables y, but also unob-
served state variables c and h, and the shocks should perturb both the observed as well
as the unobserved variables.23 However, precise injection of shocks to the state variables
is a challenging task given the complexity of a typical LSTM’s network of hidden units
and connections.

One simple indirect way that works in practice is as follows. The shock ξτ is manufac-
tured using Cholesky decomposition as above. During the usual “warmup session” that is
necessary for initialization of the state of the trained LSTM before any usage (and in our
case is carried out by feeding the NN with variables’ steady-state values and discarding
the outputs), the shock ξ := ξτ is added on top of the usual “warmup” inputs, thus shift-
ing the corresponding state variables in the appropriate direction. Then, at impulse time
τ , the system receives an input of the starting point with the added shock, yτ := y∗+ ξτ ,
and predictions for H steps ahead are produced.

Reactions of the VAR and two MRNN models to a 1 percentage point (i.e., 100 basis
points) increase in the Fed Funds rate are presented in two forms.24,25 First, temporal
evolution of the responses is shown in Figures 2, 3 and 4.26 The figures include pointwise
confidence bands, obtained by blocks-of-blocks bootstrap (in the terminology of Kilian and
Lütkepohl, 2017).27 Second, the same results are summarized in cumulative annualized
terms in Table 4. The following observations can be made:28

22Explicit modeling of a function together with its derivatives by NNs was studied in, for example,
Hornik et al. (1990).

23In a non-degenerate LSTM MRNN, the state of the system matters. Therefore, without also shocking
the unobserved state variables, the shocked observed variable and the whole system quickly revert to the
unconditional mean (in our case, almost immediately).

24Note that given the existence of more than one stable steady state in MRNN, the impulse responses
offered by MRNN are in certain sense “local”, as opposed to the “global” responses provided by VAR.

25Before constructing impulse response functions, the LSTM MRNN architecture selected before (in
§4.2.1) has been trained for additional 10 epochs (amounting to 20 epochs of training in total).

26In the case of MRNN, since direct forecast values are somewhat noisy in practice, in order to avoid
contamination with their noise we plot the difference between responses to a positive shock ξτ := Le4 =

L× [0; 0; 0; 1; 0] and to a zero shock ξτ := L× [0; 0; 0; 0; 0], rather than the outright response to a positive
shock ξτ := L× [0; 0; 0; 1; 0].

27Block size used was 48, structural shocks were defined by Cholesky decomposition of the residual
variance-covariance matrix estimated in the actual sample.

28We use the wording “short term” and “long term” in the sense of presented impulse response horizons
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(i) For the real output, economic intuition suggests contraction/slowdown in response to
transitory Fed Funds rate increase (monetary contraction reduces nominal aggregate
demand, affecting not only nominal, but also real quantities). VAR implies, after a
brief growth acceleration in the short term, a slowdown in the long term. MRNN
(for either regime) implies a growth slowdown that starts in the short term and
continues into the long term.

(ii) For the output price inflation rate, economic intuition suggests deceleration in re-
sponse to transitory Fed Funds rate increase (monetary contraction reduces nominal
aggregate demand, initiating disinflationary pressure). VAR implies an acceleration
of output inflation in the short as well as in the long term. MRNN (in low regime)
implies no reaction in the short term, but a long-term inflation deceleration; MRNN
(in high regime) implies unchanged inflation in the short as well as in the long term,
but demonstrates inflation acceleration in the medium term.

(iii) For commodity prices, economic intuition suggests contraction/deceleration in re-
sponse to a Fed funds rate increase (tighter monetary supply increases the relative
price of currency in terms of goods). VAR implies commodity inflation deceleration
that starts in the short term and continues into the long term. MRNN (low regime)
implies commodity inflation deceleration both in the short and in the long term.
MRNN (high regime) implies a short-term acceleration followed by a long-term de-
celeration, with the magnitudes that cancel each other out.

(iv) For Fed Funds rate, a stable time-series system should deliver gradual vanishing of
its response to the initial impulse (as long as the shock is transitory). VAR implies a
gradual mean-reversion of Fed Funds rate after a shock. MRNN (for either regime)
also implies a gradual reversion to the respective steady state.

(v) For the nonborrowed reserves that banks hold with the central bank, economic intu-
ition suggests their contraction/slowdown in response to a Fed Funds rate increase
(tighter monetary policy increases the opportunity cost of holding reserves). VAR
implies a slowdown in reserve accumulation that starts in the short term and con-
tinues into the long term. MRNN (for either regime) implies a slowdown over both
the short and the long term.

Apart from relatively mild quantitative differences, the key qualitative differences be-
tween MRNN and VAR demonstrated in this exercise concern the responses of Real GDP
and GDP Price Deflator growth rates. The effect of monetary contraction on output
growth is unambiguously negative in MRNN model, in either of its two economic regimes.
But the effect is positive before turning negative in VAR model. The effect of monetary

(rather than, say, transitory and permanent effects). For instance, long-term response should not be
confused with a new long-run steady state.
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Figure 2: Impulse response functions: VAR.
Reactions in the VAR model (thick dashes) to a shock of +1 p.p. in the
Effective Fed Funds rate variable, together with the 70% confidence
intervals (thin dashes) and the steady state values (solid lines).
Units on the horizontal axis: months.
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Figure 3: Impulse response functions: MRNN, low regime.
Reactions in the MRNN model (thick dots) to a shock of +1 p.p. in the
Effective Fed Funds rate variable, together with the 70% confidence
intervals (thin dots) and the low regime’s steady state values (solid lines).
Units on the horizontal axis: months.
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Figure 4: Impulse response functions: MRNN, high regime.
Reactions in the MRNN model (thick dots) to a shock of +1 p.p. in the
Effective Fed Funds rate variable, together with the 70% confidence
intervals (thin dots) and the high regime’s steady state values (solid lines).
Units on the horizontal axis: months.
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Table 4: Impulse Responses, Annualized averages

Model RGDP GDPDefl CommodPrice FedFunds NonborrowRes
MRNN, low regime

no shocks 1.44 1.12 7.31 4.18 3.95
+FF shock 1.36 1.06 4.14 4.72 1.92

MRNN, high regime
no shocks 1.85 3.63 -0.14 5.84 8.26

+FF shock 1.52 3.71 -0.18 6.37 7.43
MRNN, at ZLB

no shocks 0.73 0.77 -3.93 0.10 533.60
+FF shock 0.49 0.83 -4.29 0.61 533.25

VAR
no shocks 1.87 1.91 3.87 5.35 39.17

+FF shock 1.73 2.05 2.70 6.33 26.13
Notes: Impulse responses to a shock of +1 p.p. in the Effective Fed Funds rate variable,
together with baselines of no shocks, are presented, in horizontal panels, for MRNN (low
rates of Real GDP growth, GDP Deflator inflation and Fed Funds regime, then high
rates of Real GDP growth, GDP Deflator inflation and Fed Funds regime, as well as at
Zero Lower Bound); and also for VAR with lag length L = 3. Impulse response values
are appropriate averages over the 24-month horizon. Variables, in columns, are Real
GDP growth, GDP Deflator inflation, Commodity Price inflation (all month-over-month,
in percents, annualized); Fed Funds rate (level, in percents, annualized); Nonborrowed
Reserves change (monthly difference, in billions of US dollars, annualized).

tightening on inflation is negative in MRNN’s regime characterized by low growth, infla-
tion and policy interest rates; though it is positive in MRNN’s regime characterized by
high growth, inflation and policy interest rates. The effect is unambiguously positive in
VAR model. Arguably, the system responses are more plausible from economic theory
perspective in the case of MRNN. (A cautionary note applies: our confidence bands are
rather large, in particular those growth and inflation responses that contradict economic
intuition are not statistically significant.)

Conventional vs. Fisherian views on inflation: The effect of monetary policy
shock on output growth is not too dissimilar in the presented models—at least in the
long-term—and is roughly in agreement with economic theory. However, its effect on
price inflation differs substantially between the models, economic regimes and horizons,
with the sign varying from positive to negative; satisfactory theoretical understanding is
also lacking in this respect.
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Conventional economic theory predicts that transitory Fed Funds rate increase leads
to lower inflation (through the nominal aggregate demand channel), even though it may
not necessarily materialize in the very short term (e.g., see Christiano et al., 2005).

However, the so-called “price puzzle”, implying positive response of inflation to mon-
etary policy rates, has been observed in many studies (first in a VAR model due to Sims,
1992).

Addressing this challenge, in addition to important progress on the side of economet-
ric methodology29, economic theory resurrected the classical Fisherian arguments (real
interest rate is determined by economic fundamentals and can not be easily manipulated,
higher nominal interest rate ultimately translates into higher inflation rate). The latter
predict that permanent Fed Funds rate increase leads to higher inflation in the long, and
possibly even in the short term (Cochrane, 2018; Williamson, 2016).30

Nevertheless, as far as inflation response to a transitory monetary policy shock goes,
the conventional views are still more prevalent.

Interpreting the two regimes: Now, let us get back to the issue of two stable steady
states that the MRNN has identified earlier (in §4.2.2).

Looking at Table 4, the low growth, inflation and policy rates regime seems to capture
the trough stage of the business cycle, while the high growth, inflation and policy rates
regime corresponds to the peak stage.

Interestingly, in the latter macroeconomic regime that we have associated with busi-
ness cycle peak, monetary policy tightening results in much stronger growth reduction,
but without any benefit of disinflation (at least not at the horizon we consider). Since
in the peak regime inflation rate is already relatively high, such a response suggests that
respective steady state may also feature problems with anchoring inflation expectations
and central bank credibility.

29Apart from the effect of some omitted variables, a sensible interpretation of the “price puzzle” finding
is that simple, theoretically unrestricted VARs “confuse” correlation with causation. Historically, a high
rate of inflation has been associated with high nominal interest rates, and though higher inflation indeed
causes a central bank to increase the policy interest rate (one direction of causality), such an increase
itself causes inflation rate to subside (another, opposite direction of causality). With the aim of clarifying
contemporaneous causal links between variables in VARs, a large literature on structural identification
restrictions has been born (leading to so-called structural VARs, which “decompose” reduced-form VARs
by applying identification schemes that are mainly based on economic theory as opposed to relatively
atheoretical and “mechanistic” schemes such as recursive identification or identification by heteroscedas-
ticity). It includes approaches based on formal theoretical models (see e.g. King et al., 1991; Galí, 1992;
Bernanke and Mihov, 1998) as well as those based on more agnostic theoretical assumptions (for example,
sign restrictions, as in Uhlig, 2005; Antolín-Díaz and Rubio-Ramírez, 2018; Uribe; 2018).

30Although Fisherian arguments are, strictly speaking, not applicable to the case of transitory shocks,
their absolute irrelevance hinges on economic agents’ accurate real-time distinction between the two
shocks and time discounting considerations.
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Figure 5: Impulse response functions: MRNN, at Zero Lower Bound.
Reactions in the MRNN model (thick dots) to a shock of +1 p.p. in the
Effective Fed Funds rate variable, together with the 70% confidence intervals
(thin dots) and the 2011:M01 to 2012:M01 sample means (solid lines).
Units on the horizontal axis: months.
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Conditionally (Zero Lower Bound): Another case that we examine is the impulse
responses when the system is placed into specific economic environment, with the situation
around Zero Lower Bound being particularly interesting. In contrast to VAR, LSTM
MRNN may be especially useful in this case, given the latter’s ability to capture state-
dependent dynamics.

We pick January 2011 to January 2012 as the time interval when the Federal Reserve’s
main policy instrument, Fed Funds rate, was at historically low levels, and was constrained
from below by the interest rate of zero that promises no surplus return to the lender of
funds (i.e., was at Zero Lower Bound). MRNN impulse responses are computed the
same way as before, but now we initialize the model by historical data (January 2009 to
December 2011) rather than by the steady state values, and trace the multiple-steps-ahead
effect of a hypothetical Fed Funds rate shock added to actual historical data immediately
afterwards (January 2012). The results are presented in Figure 5 as well as Table 4.

Following the Fed Funds rate increase, real output growth decelerates in the short as
well as in the long term, while output price inflation rate accelerates in the short term
with no effect in the long term. Commodity price inflation turns more negative in the
short and in the long term. Fed Funds rate gradually reverts to its unshocked path.
Nonborrowed reserve accumulation barely changes and stays at historically high levels.

Comparing these responses to those in the low growth, inflation and policy rates
regime, we note three main differences. Monetary policy tightening around ZLB results
in (i) relatively larger output slowdown, (ii) inflation acceleration instead of deceleration
(in particular, with deflation risks not materializing), as well as (iii) commodity prices
that are already falling accelerating their decline even more.

5 Conclusion
In modeling half a century of US economic time-series data, Multivariate Recurrent Neu-
ral Networks outperformed mainstream Vector Auto-Regressions in terms of forecasting
accuracy and interpretability of their results. Higher precision of its out-of-sample predic-
tions suggests that MRNN acquires stronger generalization ability. Also, MRNN discovers
different macroeconomic regimes under a “hands-off” procedure, without any special mod-
eler’s intervention. Moreover, MRNN appears capable of learning theoretically plausible
causal effects from the raw data, without the need to impose sophisticated structural
identification restrictions beyond a simple recursive ordering of variables. Arguably, non-
linear architecture of NNs and the prominence of predictive criterion in their training, as
well as Long Short-Term Memory MRNN’s capability to account for conditional dynamics
of the modeled system’s state variables make them well equipped for such tasks.
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A Data inputs
List of data inputs including series names and details, units, seasonal adjustment, fre-
quency; sources (Federal Reserve Bank of St. Louis Economic Data / Datastream codes):

1.0. Real Gross Domestic Product, Billions of Chained 2012 Dollars, Seasonally Ad-
justed Annual Rate, Quarterly; U.S. Bureau of Economic Analysis (GDPC1).

1.1. Industrial Production Index, Index 2012=100, Seasonally Adjusted, Monthly;
Board of Governors of the Federal Reserve System (INDPRO).

1.2. Employment Level, Thousands of Persons, Seasonally Adjusted, Monthly; U.S.
Bureau of Labor Statistics (CE16OV).

1.3. Real Disposable Personal Income, Billions of Chained 2012 Dollars, Seasonally
Adjusted Annual Rate, Monthly; U.S. Bureau of Economic Analysis (DSPIC96).

2.0. Gross Domestic Product: Implicit Price Deflator, Index 2012=100, Seasonally
Adjusted, Quarterly; U.S. Bureau of Economic Analysis (GDPDEF).

2.1. Producer Price Index for All Commodities, Index 1982=100, Not Seasonally
Adjusted, Monthly; U.S. Bureau of Labor Statistics (PPIACO).

2.2. Consumer Price Index for All Urban Consumers: All Items in U.S. City Average,
Index 1982-1984=100, Seasonally Adjusted, Monthly; U.S. Bureau of Labor Statistics
(CPIAUCSL).

2.3. Personal Consumption Expenditures: Chain-type Price Index, Index 2012=100,
Seasonally Adjusted, Monthly; U.S. Bureau of Economic Analysis (PCEPI).

3.0. Thomson Reuters Equal Weight Continuous Commodity Index, Price Index, Not
Seasonally Adjusted, Daily; Refinitiv (NYFECRB).

4.0. Effective Federal Funds Rate, Percent, Not Seasonally Adjusted, Monthly; Board
of Governors of the Federal Reserve System (FEDFUNDS).

5.0. Nonborrowed Reserves of Depository Institutions, Millions of Dollars, Not Sea-
sonally Adjusted, Monthly; Board of Governors of the Federal Reserve System (NON-
BORRES).
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Figure 6: Plots of the original data inputs.
Variables included: logarithm of Real GDP, logarithm of GDP Price
Deflator, logarithm of Commodity Price Index, Effective Fed Funds Rate
and Nonborrowed Reserves.
Time period covered: 1959:M01 to 2019:M06.
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Figure 7: Plots of the transformed data inputs.
Variables included: Real GDP MoM growth rate, GDP Price Deflator MoM
growth rate, Commodity Price Index MoM growth rate, Effective Fed Funds
Rate and Nonborrowed Reserves monthly difference.
Time period covered: 1959:M02 to 2019:M06.
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B Data interpolation: quarterly into monthly
Real GDP is observed at quarterly frequency, and the interpolation is based on the infor-
mation contained in Industrial Production Index, Employment level and Real Disposable
Personal Income that are observed monthly. Similarly, GDP Deflator is observed quar-
terly, and is interpolated using Producer Price Index, Consumer Price Index and Personal
Consumption Expenditures Price Index that are observed monthly.

Denoting the interpolated quarterly variables as yt, and the interpolating monthly
variables as xi,t, i = 1, 2, 3, the state-space system is formulated as

yt = β0 + β1x1,t + β2x2,t + β3x3,t + ut,

ut = ρut−1 + ϵt,

where the measurement equation contains variable yt that is observed only at the last
months’ of each quarter, while variables xi,t are observed for every month; the state
equation contains variable ϵt that is unobserved and is assumed to be distributed as
ϵt ∼ N (0, σ2

ϵ ); with β0, β1, β2, β3, ρ and σ2
ϵ being constant parameters.

After standardization, or normalization, defined as zt := 1 + ln(zt/z3), for z ∈ {y, x}
and where t = 1, 2, . . . , 726 (i.e., from 1959:M01 to 2019:M06), we estimate two interpo-
lating models for the levels of Real GDP and GDP Deflator independently by maximum
likelihood using the Kalman–Bucy filter (analogously to Bernanke et al., 1997).
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C Data augmentation
As a robustness check, in particular to address possible concerns about relying on a very
limited data set, we attempt a data augmentation exercise.

Since in our modeling approach we abstain from imposing any structure on our data,
the augmentation strategy we chose is noise contamination. Specifically, we (i) divide the
existing (standardized) time series into blocks of 50 consecutive observations; (ii) copy
the data set 10 times; (iii) randomly shuffle the blocks in the enlarged data set; (iv) add
Gaussian noise (with zero mean and a variance-covariance observed in the training sample)
scaled by 0.1; (v) additionally paste the last block of the (uncontaminated) training data
set at the end of the time series. Thus, we extend the training data set tenfold, leaving
the validation and test samples untouched.

Keeping the MRNN architecture chosen in the main text, on augmented data set the
model was trained exactly the same way as before. When we applied the trained net to
the uncontaminated data set, the measures of fit on all three sub-samples underperformed
those of our original MRNN.

Our data augmentation approach did not seem to offer any advantage over using just
the existing data as is. However, a different approach may prove to be more fruitful, hence
verification of different augmentation settings or perhaps even trying a more structural
augmentation strategy is still a worthwhile exercise.
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