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Abstract

This paper considers the problem of learning and decision-making in a dynamic
stochastic economic environment by agents subject to information processing con-
straints. An agent endogenously chooses to operate in terms of a simplified model
of the economy, which implies: a delayed, if at all, updating of the estimates of
evolving states/random variables’ conditioning parameters; as well as the entropy
reduction, or even its complete “folding” that drops the less important variables
from the agent’s approximating model. Specifically, parameter learning is imple-
mented relying on computational complexity theory, which produces a constrained
version of the standard Kalman filter. The latter leads to a less than one-for-one
reaction to the newly observed information, without the need to postulate e.g.
habit formation; which is responsible for an underreaction to permanent parameter
changes (“stickiness”), as well as for an overreaction to transitory shocks (“over-
shooting”). In a standard stochastic growth model with government transfers, such
agents may fail to realize that a fiscal expansion now necessitates a compensatory
fiscal contraction later, which implies the effectiveness, in certain sense, of the fiscal
stimulus policy (albeit at the expense of efficiency losses) and a violation of the
Ricardian equivalence. Numerical simulations suggest high fiscal multipliers, with
the effects relatively stronger at times of economic recession. Being the outcomes
of endogenous choices of rational agents, these results are immune to the Lucas
critique.

∗Preliminary version. Acknowledgements: to be added.
†Contact address: verstyuk@cmsa.fas.harvard.edu.
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The chief difficulty Alice found at first was in managing her
flamingo: she succeeded in getting its body tucked away, comfortably
enough, under her arm, with its legs hanging down, but generally,
just as she had got its neck nicely straightened out, and was going
to give the hedgehog a blow with its head, it would twist itself round
and look up in her face, with such a puzzled expression that she
could not help bursting out laughing: and when she had got its head
down, and was going to begin again, it was very provoking to find
that the hedgehog had unrolled itself, and was in the act of crawl-
ing away: besides all this, there was generally a ridge or furrow in
the way wherever she wanted to send the hedgehog to, and, as the
doubled-up soldiers were always getting up and walking off to other
parts of the ground, Alice soon came to the conclusion that it was
a very difficult game indeed.

—Lewis Carroll, Alice’s Adventures in Wonderland

1 Introduction
We are interested in the behavior of economic agents whose information-processing ca-
pacities are limited. Consequently, they resort to subjective simplification of the external
stochastic environment when solving their optimization problem as well as making their
economic and financial decisions. This study is an extension of the earlier work (Verstyuk,
2017); now we consider an economic environment with richer non-i.i.d. stochastic dynam-
ics where the process of learning the evolving parameters/state variables takes center
stage.

Specifically, we take a real business cycle/stochastic growth model as a workhorse,
and extend it with costly information-processing (plus government transfers standing in
for fiscal policy as well as a storage technology standing in for savings/investments in
riskless bonds). The agent chooses a simplified, approximating model of the economy and
ignores some dimensions of the stochastic environment he/she operates in; and even to
those dimensions he does not ignore, adjusts only with a delay. As a result, the agent
commits systematic, “forced” mistakes. In particular, he is unable to (i.e., endogenously
chooses not to) take into account that the fiscal expansion today must be balanced by
a fiscal contraction of comparable magnitude later. This triggers the breakdown of the
“Ricardian equivalence” and engenders the effectiveness of “fiscal stimulus”.

Thus, the constraints on agents’ information-processing capacities imply that fiscal
policy becomes potent: “stimulus works”. But at the same time these constraints prevent
the agents from achieving a “first-best” optimum, as a result the optimal fiscal policy can
only strive for “second-best” outcomes.

It is important to emphasize that the Lucas critique does not apply in our model:
if the fiscal stimulus is large and/or long enough, the agents readjust (it would be both
optimal and feasible for them to do so).
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In our numerical simulations, the economic effects are potentially powerful: the “fiscal
multiplier” for consumption is well above 1. Also, the effects are state-dependent: for
instance, they are stronger at times of economic recession.

Turning to methodological aspects, while in a less involved case of i.i.d. stochastic
dynamics of Verstyuk (2017) we relied on the methods based on information theory, in
this work we adopt the approaches from computational complexity theory and theoret-
ical computer science more broadly. (In terms of computational complexity, these two
formalisms roughly correspond to the concepts of communication complexity and time
complexity, respectively; moreover, in our framework they can be straightforwardly rec-
onciled and formulated in a unified fashion, as we show in Appendix §A.)

Last but not least, our relatively more abstract theoretical results include the reformu-
lation and refinement of the Kalman filter that accounts for computational constraints.
Also, within our framework the information-processing capacity constraints in general
induce endogenously such biases in agents’ perception and behavior as “stickiness” (i.e.,
“unerreaction” to parameter/state variable changes) and “overshooting” (i.e., “overreac-
tion” to noise). (Note that delayed response occurs here without the need to resort to
adjustment costs or appeal to habit-formation arguments.)

1.1 Literature
Broadly speaking, we aim to improve our understanding of some puzzling aspects in the
consumption (and savings/investment) responses to income shocks, bringing about such
fundamental issues as the “propensity to consume” and “Ricardian equivalence”. This is a
long-standing research problem, stretching to—we limit ourselves to modern formulations
only—classical Friedman (1957) and Campbell and Deaton (1989) (also see Campbell and
Cochrane, 1999; Carroll et al., 2000; Fuhrer, 2000; or, alternatively, Carroll, 2001) as well
as Barro (1974). More recently, a careful empirical analysis by Parker (2017) examines
the households’ propensity to consume the 2008 economic stimulus payments in the US,
paying a particular attention to the decision-theoretic aspects involved.

It is the policy facet of the above consumption and income interrelationship that in-
terests us most. Specifically, this work models the effect of fiscal policy on aggregate
economic outcomes, for instance it deals with the notion of a “fiscal multiplier”. The
relevant fresh theoretical research in this area includes Woodford (2011) as well as Farhi
and Werning (2016). The empirical studies have been undertaken using both structural
(e.g., Lucas, 2016; Faria-e-Castro, 2017) as well as non-structural (e.g., Auerbach and
Gorodnichenko, 2012) approaches. A good concise overreview is available from the Con-
gressional Budget Office (2012).

The channel through which fiscal policy becomes effective here rests not on market
structure (a combination of monopolistic competition and nominal rigiditiies) or financial
(net worth/balance sheet constraints) considerations, but rather on decision-theoretic
underpinnings. Such a mechanism is based on the optimizing behavior of agents, thus
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departing from and developing further the approach based on postulated “rule-of-thumb”
behavior (due to Campbell and Mankiw, 1989; also see Mankiw, 2000, and Galí et al.,
2007), and generally sharing the thinking and ambition of Gabaix (2014a, 2016b).

Our mechanism behind the potency of fiscal policy is one specific example of the
broader mechanisms that restrain the (extent of) decision-makers’—and thus endogenous
economic variables’—responses to exogenous shocks. The potential importance of such
“dampening” effects have been examined recently in Gabaix (2016a, 2016b), Cochrane
(2016) Angeletos and Lian (2016, 2017) as well as Farhi and Werning (2017); but also see
an earlier proposal on modeling this kind of “stickiness” in economic dynamics by Sims
(1998).

The conceptual approach builds on Verstyuk (2017). In contrast to what has been
done there, here to formalize the information processing capabilities of decision-makers in
the context of learning tasks the concept of computational complexity that we use is the
complexity of mathematical operations (i.e., time complexity rather than communication
complexity). For a comprehensive textbook introduction, see Arora and Barak (2009) as
well as Cormen et al. (2009).

2 Model

2.1 Setup and infeasible problem
The problem formulation is as follows (using the same notation as in Verstyuk, 2017).
The agent’s original/infeasible problem is:

v♯(Kt−1, zt,µt|t) = max
Ct,Kt,Lt

¶
u(Ct,Lt) + βEg

t

î
v(Kt, zt+1,µt+1|t+1)

ó©
{PK}

subject to

Ct + V ᵀtqt + 1ᵀKt = (V t +Dt)
ᵀqt−1 + (rt + (1− δ))ᵀKt−1 +wᵀtLt =: Wt,

where Ct is a sum of perfectly substitutable consumption goods produced by K production
technologies. Utility function is

u(Ct) = ϖ
C1−γ

t

1− γ
−

K∑
k=1

L1+ηk
k,t

1 + ηk
.

The production function is CRS Cobb-Douglas,

Yk,t =
Ä
Zk,t − Žk

ä
Kαk

k,t−1L
1−αk
k,t , ∀k ∈ {1, . . . , K},

where Zk,t, Kk,t−1 and Lk,t are, respectively, technological productivity, capital and labor
(with production function-specific normalizing constant Žk). The firm’s problem gives

rk,tKk,t−1 = αkYk,t, ∀k ∈ {1, . . . , K},
wk,tLk,t = (1− αk)Yk,t, ∀k ∈ {1, . . . , K},
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where the returns on capital rt and wage rates wt equal the factor marginal products.
The firms rent capital from consumers-investors-workers, and are owned by the latter.
Since firms are competitive, profits and dividends Dt, and hence firm value V t, are all
identically 0, and can be dropped from the agent’s budget constraint.

The stochastic process for productivity Zt is captured by the following dynamic sys-
tem, defined in terms of zk,t := lnZk,t. The state equation is

µt = Aµµt−1 + εµ,t,

where

µt =

µ0,t

µ1,t

 , Aµ =

IK 0K×K

IK ρ

 , εµ,t =

εµ0,t
εµ1,t

 ∼ N

Ñ0K×1

0K×1

 ,
 Σεµ0 0K×K

0K×K Σεµ1

é ;

and the observation equation is

zt = Azµt + εz,t,

where
Az =

[
0K×K IK

]
, εz,t ∼ N (0K×1,Σεz).

Henceforth, notation 0r×c denotes a matrix of zeros with dimensionality r × c; notation
Ir denotes an identity matrix of dimensionality r.

The current state µt is unobserved and must be learned from observed variables zt

using a (standard) Kalman filter, producing µt|t:

µt|t−1 = Aµµt−1|t−1,

Υµ,t|t−1 = AµΥµ,t−1|t−1A
ᵀ
µ +Σεµ,

µt|t = µt|t−1 +Bt

Ä
zt −Azµt|t−1

ä
,

Υµ,t|t = (IK −BtAz)Υµ,t|t−1,

where Kalman gain Bt solves

Bt := arg
ß
min
Bt

Eg
î
||µt − µt|t||22

ó™
and equals

Bt = Υµ,t|t−1A
ᵀ
z

Ä
AzΥµ,t|t−1A

ᵀ
z +Σεz

ä−1
.

Intuitively, the motive for estimating µt|t is to improve the forecast (i.e., reduce the
conditional variance) of zt+1.

2.2 Feasible problem (formulation)
Solving the optimization problem is affected by the potentially binding information-
processing capacity constraints: 1) the learning of the parameters of the relevant prob-
ability distributions is subject to the mathematical operations complexity constraint; 2)
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the maximization of the value function and the evaluation of the integral on the RHS
of the Bellman equation is subject to the mutual information constraint. The agent’s
generalized/feasible problem is therefore:

v(Kt−1, ẑt, µ̃t|t) = max
Ct,Kt,Lt

¶
u(Ct,Lt) + βEh

t

î
v(Kt, ẑt+1, µ̃t+1|t+1)

ó©
{PKT I}

subject to

Ct + V ᵀtqt + 1ᵀKt = (V t +Dt)
ᵀqt−1 + (r̂t + (1− δ))ᵀKt−1 + ŵᵀtLt =: Ŵt,

with utility function and firm production relations as above. One module is the familiar
consumption-investment-labor problem we have seen in part §2.1.

We are given the probability distribution g(zt+1|µt+1) (which can be more usefully
reformulated as g(zt+1|µ̃t+1|t), as is done later) that represents the dynamic system in-
troduced in §2.1; and the distribution h(ẑt+1|µ̂t+1) (also, h(ẑt+1|µ̂t+1|t)) is a marginal of
f(zt+1, ẑt+1|µt+1, µ̂t+1) (which is defined below).

Objects µ̃t|t and h(ẑt|µ̂t|t) solve an auxiliary complexity/information processing prob-
lem (which in turn consists of learning/updating and informational/evaluation-optimization
sub-parts)

min
B̃t,f(·,·)

Ef
t

î
d(v♯(Kt, zt+1,µt+1|t+1), v(Kt, ẑt+1, µ̃t+1|t+1))

ó
{PT I}

subject to constraints

T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1) ≤ κT ,

I(g(zt+1|µ̃t+1|t);h(ẑt+1|µ̂t+1|t)) ≤ κI

(see Appendix §A for the definitions and additional formal details).
Here, information constraint I(g(·);h(·)) ≤ κ means that the chosen simplified distri-

bution h(·), which approximates a given complex distribution g(·) and is used for finding
optimal choices of the control variables {C∗

t ,K
∗
t ,L

∗
t}, does not exceed the stochastic eval-

uation capacity bound κI (this is based on the concept of mutual information and entropy
more broadly, details can be found in, e.g., Cover and Thomas, 2006; most closely it is
related to the concept of communication complexity, see, e.g., Arora and Barak, 2009). It
was introduced and discussed in Verstyuk (2017). Intuitively, capacity κI may be thought
of as the complexity of the (approximating) probability distribution that can be feasibly
evaluated and used in stochastic optimization.

Additionally, learning/updating constraint T (µ̃t+1|t, µ̂t+1|t∥·) ≤ κT means that the
execution of the Kalman filter updating and mean-adjustment procedures producing, re-
spectively, µ̃t+1|t and µ̂t+1|t, does not exceed the mathematical operations capacity bound
κT (this is close to the concept of time complexity, see Arora and Barak, 2009).1 Intu-
itively, capacity κT may be thought of as the number of the (approximating) model’s

1Perhaps a more familiar way of formalizing the notion of time complexity of mathematical operations
is specifying the complexity class a function/procedure belongs to, e.g., O(K3) or Θ(K3). But that ap-
proach provides instead the number of operations’ bound defined only asymptotically up to a normalizing
constant, as a function of algorithm’s dimensionality, i.e., 2K in our case.
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parameters that can feasibly be re-calculated and used for updating the stochastic opti-
mization problem’s setup.2

The complexity of updating conditional means is measured as

T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1) := time ({P ,P∧}) ;

where procedure P , which will be defined soon, stands (with a slight misuse of notation)
for the operations

µ̃t+1|t := Aµ

Ä
µ̃t|t−1 + B̃t

Ä
zt −Azµ̃t|t−1

ää
,

and P∨, which will be derived later in Proposition 2, stands for

µ̂t+1|t := µ̃t+1|t + µ̌t+1,

while function time(·) returns the number of primitive arithmetic operations to be applied
to individual scalar elements to produce an output (in our case, {µ̃t+1|t, µ̂t+1|t}) from the
input ({zt, µ̃t|t−1}) using the procedure(s) specified in the function’s argument (as well
as the parameters such as Aµ,Az, B̃t+1, µ̌t+1 that are left implicit). Think of it not as a
physical time, but as a processing time as, for example, provided by on-demand computing
services.

To be specific, in this problem

time ({P ,P∨}) =
Å
((2k)2)k + k + (k2)2k + 2k + (2k)3

ã
+
Å
2k
ã
, (1)

where non-negative integer k is the size of vectors that procedures {P ,P∨} operate on
(see Cormen et al., 2009, for details on the complexity of matrix algebra operations).
Here, the first term on the right-hand-side of the expression is the number of operations
required to update µ̃t+1|t (following the equations in P ). While the second term is
the number of operations required to update µ̂t+1|t (using its constructive definition, P∨,
from Proposition 2). Altogether, the right-hand side of the expression specifies the total
number of operations required to update k of the problem’s dimensions (witness the “curse
of dimensionality” due to the presence of cubic terms).

Above, µ̃t|t comes from the ancillary Kalman filter updating procedure P performed
every period t > 1:

µ̃t|t−1 = Aµµ̃t−1|t−1, {P }
Υµ,t|t−1 = AµΥµ,t−1|t−1A

ᵀ
µ +Σεµ,

µ̃t|t = µ̃t|t−1 + B̃t

Ä
zt −Azµ̃t|t−1

ä
,

Υµ,t|t =
Ä
IK − B̃tAz

ä
Υµ,t|t−1,

2In our specific application, the above concepts of computational complexity are essentially equivalent,
both communication and time complexity can be mapped to each other, or to the concept of space
complexity. This equivalence allows defining comparable measurement scales and, taking it further, a
common information-processing capacity bound; as is done in Appendix §A. For ease of exposition,
however, in the main text we disentangle these two notions.
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where B̃t is defined later. This procedure constitutes a (constrained) Kalman filter-based
algorithm for parameter learning/updating.

The complexity problem is solved at the outset, in period t = 1, and its solution is
used for optimizing the agent’s consumption-investment-labor problem from then on, in
periods t > 1.

As specified above, the parameters defining our stationary ergodic dynamic system
(Aµ, Az; Σεµ, Σεz) are fixed and known. However, in a realistic application, the pa-
rameters assumed so far as fixed may change. For example, a regime change (cyclical
upswing/downturn, the start/end of hyperinflation, etc.) may severely perturb the first
and second moments of the dynamic system considered. Such a disrupton would prompt
the agent to re-solve the informational and learning problem PT I afresh. The costs of
re-solution are high (due to the excess strain on available computational capacity and the
need to fine-tune new “learning and informational policy” rules leading to temporarily
larger decision errors, etc.3), so can not be incurred routinely; but they may nevertheless
be outweighed by the benefits if the parameter change is large. The following Proposition
offers a strategy for detecting a (potentially non-ergodic) perturbation to such a dynamic
system.

Proposition 1 (Re-Solution of Complexity Problem: Threshold Strategy). Assume that
(i) the mean and variance parameters (Aµ, Az; Σεµ, Σεz) may change within some
parameter set (Θ) with a “small” but strictly positive probability; and that (ii) upon
detection (with sufficient significance level defined below) of a parameter change, it is
optimal to re-solve the complexity problem PT I immediately. Then, the following sequential
testing strategy gives an optimal trigger for re-solving the problem PT I afresh (and for
re-setting the value of current t to 0): a cumulative (for s < t− 1) absolute error between
the expected and realized/experienced value functions

ςs:t−1 :=
1

t− s

t−1∑
ι=s

∣∣∣v(Kι, ẑι+1, µ̃ι+1|ι+1)− Eh
ι

î
v(Kι, ẑι+1, µ̃ι+1|ι+1)

ó∣∣∣
that exceeds a chosen threshold, ςs:t−1 > ςa. The threshold value is ςa := ς0:s−1/a, with
ς0:s−1 for 0 < s ≤ t − 1 serving the role of the inference sample defined analogously to

3Our understanding is that there are some fixed costs of (re-) solving the complexity problem PT I .
We do not explicitly quantify these costs and leave them abstract because we are only interested in the
conceptual point here. One can think about them as, first, costs of information gathering (data collection,
parameter estimation) in monetary and physical time terms. Second, computational costs time(PT I) of
solving for new learning and informational policy rules. During the process, some default values of the
control variables are used, for example, the previous period’s values (i.e., 0 optimizing iterations are
performed starting from the last period’s values, see Verstyuk, 2017, Appendix §F), or a pre-defined
minimal consumption level along with investment solely in a riskless capital/storage technology and
employment solely in a firm with riskless productivity process. Third, economic, including opportunity,
costs in terms of losses due to decision mistakes committed during the interval of fine-tuning the new
policy rules (say, by reinforcement learning); as well as due to postponement of urgent decisions (e.g.,
investment into new technology or new employment/hiring) until the re-solution is over.
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testing sample ςs:t−1, and the scalar a denoting a chosen Type-I error rate (significance
level).

Proof. See Appendix §F.

Assumption (ii) can be motivated by, say, the extreme aversion to ambiguity induced
by unknown values of the mean and variance parameters.

Intuitively, the large deviations between observed and expected decision criterion (i.e.,
value function) suggest to the agents that their existing model/solution has broken down.
In other words, the agents react not to a series of large “bad” (or “good”, as the treatment
is symmetric) shocks and resulting losses (gains), but rather to their failure in undersand-
ing the causes of such deviations.4

Thus, a “regime change” (e.g., an increase in temporal/spatial dependence or a volatil-
ity rise) prompts agents to re-solve their model afresh. One particularly important im-
plication is that the behavior of agents in our framework becomes immune to the Lucas
critique. For instance, it ensures that a systematic policy to stimulate aggregate demand
can not be effective in the long run.

To sum up, the architecture/hierarchy of decision-making in our framework comprises
two modules that together solve problem PKT I for all periods:

(i) in period t = 0, the auxiliary complexity sub-problem PT I is (re-) solved subject to
learning/updating constraint on T (·) and information constraint on I(· ; ·) (as well
as using the eigendecomposition procedure P� if necessary, see Verstyuk, 2017);

(ii) in each period t > 0, the consumption-investment-labor sub-problem of the main
problem PKT I is solved subject to the budget constraint, utilizing solutions to PT I

from (i) above, as well as using the Kalman filter updating procedure P , the mean-
adjustment procedure P∨ and the expectation operator Eh

t [·] evaluation procedure
P∫ (once per each optimization iteration).

In this write-up, the optimization problems are signified by P with letter subscripts, while
the ancillary procedures are instead signified by P with pictogram subscripts.5

4Such periods of paradigm shifts and the revision of established approaches in order to “face reality” are
important in real life, and might be one of the ingredients behind the dynamics involving the phenomena
usually referred to as “sentiment swings”.

5Note that in the interest of transparency and easier exposition, we only impose bounds on the learning
of stochastic parameters and on the manipulation of stochastic objects in the optimization problem.
However, we do not restrict other computations such as dealing with the budget constraint. One way to
accept such an approach is by assuming that computations not accounted for explicitly here have been
prioritized in the hierarchy of capacity demands, and now we are only allocating the remaining, marginal
capacity.
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2.3 Feasible problem (solution)
Assume a distance function of the L2 norm (squared) form: d(v♯, v) := (v♯ − v)2. Since
we do not know the analytical expression for the value function in this problem, for
tractability we replace it with wealth (which is somewhat motivated by a special case
from Verstyuk, 2017), effectively assuming one to be proportional to the other.6 This
yields (v♯ − v)2 ≈ (W − Ŵ )2. Then, the following Proposition can be stated.

Proposition 2 (Distortion Function). The above distortion function, in the context of
problem PKT I, given the distributional assumptions (as well as (i) replacement of the
value function with the wealth variable, (ii) the dominance of the first-order effects of
zt+1 and ẑt+1 on wealth, and (iii) imposing the motive of minimization of maximum loss
for possible combinations of chosen control variables and realized state variables), can be
reformulated as follows:

d
Ä
v♯(Kt, zt+1,µt+1|t+1), v(Kt, ẑt+1, µ̃t+1|t+1)

ä
≈
Ä
Wt+1 − Ŵt+1

ä2
≈

≈ ||zt+1 − ẑt+1 +Azµ̌t+1||22,

where the conditional mean µ̂t+1|t of the simplified random variable ẑt+1 equals

µ̂t+1|t := µ̃t+1|t + µ̌t+1, {P∨}

with the bias term

µ̌t+1 :=

 0K×K

1
2
diag−1(Σz,t+1|t − Σ̂z,t+1|t)

 ,
which uses Σz,t+1|t and Σ̂z,t+1|t to denote the conditional variance-covariance matrixes for
zt+1 and ẑt+1, respectively.

Proof. See Appendix §G.

The technical assumptions (ii) and (iii) mentioned in the statement of the Proposition
are fairly mild, and are flashed out in more detail in the arguments of the proof. The
Gaussian distribution for the simplified random variable ẑt+1 implicitly postulated above
is verified later. Appendix §B lists the definitions and decomposition formulas relevant
to this part.

The main result of Proposition 2 is the sum-of-squares representation of the distance
function, which will let us stay within the Gaussian environment facilitating subsequent
derivations and arguments. Another result is the introduction of the bias term µ̌t+1 that
compensates for the difference between variance-covariance matrixes Σz,t+1|t and Σ̂z,t+1|t,
as well as the definition of the respective ancillary mean-adjustment procedure P∨.7

6An alternative route would be to deal with the second-order Taylor expansion of the two value
functions above.

7For instance, without the stochastic volatility optimal mean adjustment µ̌t+1 is constant; if, addi-
tionally, Σ̂z,t+1|t = 0, then µ̌t+1 ensures that Ẑt+1 under h(ẑt+1|µ̂t+1|t) equals (almost surely) to the
expected value of Zt+1 under g(zt+1|µ̃t+1|t).
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Before solving the complexity problem PT I , we use Proposition 2 to split it into two.

Proposition 3 (Complexity Problem Split into Two Sub-problems). For the distortion
function above, the complexity problem PT I splits into learning/updating and informati-
onal/evaluation-optimization sub-problems,

min
B̃t

Ef
t

î
||µt − µ̃t|t||22

ó
= tr(Υµ,t|t) {PT }

subject to
T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1) ≤ κT ;

and
min
f(·,·)

Ef
t

î
||zt+1 − ẑt+1 +Azµ̌t+1||22

ó
= tr(Ψz,t+1|t) {PI}

subject to
I(g(zt+1|µ̃t+1|t);h(ẑt+1|µ̂t+1|t)) ≤ κI .

Proof. See Appendix §H.

Solution to the informational sub-problem PI is analogous to Verstyuk (2017, see
Propositions 4 and 5 there), with an exception that mean µt+1 is also stochastic now.
The learning sub-problem PT is attended to next.

Proposition 4 (Solution to Learning Problem). In the context of problem PKT I, the
solution to the learning sub-problem PT is given by the constrained Kalman gain matrix
B̃t defined as

B̃t :=


Bt if k⋆ = K,

B⋆
t if 0 < k⋆ < K,

02K×K if k⋆ = 0,

where Bt is the unconstrained Kalman gain defined earlier; and in the leading case solution
B̃t simplifies to

B⋆
t :=


B[1:k⋆×1:K],t

0(K−k⋆)×K

B[(K+1):(K+k⋆)×1:K],t

0(K−k⋆)×K

 .

Pre-sorting the (diagonal) elements that form the variance-covariance matrix of update
errors Υµ,t|t in the order of variability, the cut-off parameter k⋆ is defined by:

{Υkk}K1 := sortdescending({Υkk}K1 ),
k⋆ := arg min

k∈{1,...,K}
{Υkk | T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1) ≤ κT } =

= arg min
k∈{1,...,K}

{Υkk |
Å
((2k)2)k + k + (k2)2k + 2k + (2k)3

ã
+
Å
2k
ã
≤ κT }.

10



Proof. See Appendix §I.

In the Proposition’s formulation, notation M [r1:r2×c1:c2] denotes a partition of matrix
M starting at position (r1, c1) and ending at position (r2, c2). Basically, in the end
certain rows in the Kalman gain matrix are wiped out.8

In the definition of k⋆ above, we measure the complexity of updating parameters as
specified in part §2.2. The left-hand side of the conditioning inequality specifies the
number of the problem’s dimensions that can be updated given capacity bound κT .

The basic idea of the mechanism is that due to capacity bounds, which are restricting
the scope of updating of the stochastic environment’s parameters (i.e., µ̃t|t and µ̂t|t),
such an updating is performed only for a subset of the most important variables (in our
illustrative application, the ones with the largest variability).

For clarity, the practical implications of Proposition 4 are distilled into two corollaries.

Corollary 1 (Solution to Learning Problem: Stickiness/Inertia). The updating of the
estimates of the random variables’ conditional first moments by the (constrained) Kalman
filter from Proposition 4 is determined by the sensitivity of µ̃t|t to period-t shocks to µt,
which is captured by a bounded expression (for a non-explosive matrix Az)

∂µ̃t|t

∂εµ,t
= B̃tAz ∈ [0,1).

Thus, updating is either slow and staggered (0 < ∂µ̃t|t,k/∂εµ,t,k < 1,∀k ≤ k⋆) or completely
absent and rigid (∂µ̃t|t,k/∂εµ,t,k = 0,∀k > k⋆).

Proof. The equation follows from P , with Proposition 4 giving the bounds on the row
sums of B̃t.

Corollary 2 (Solution to Learning Problem: Overshooting/Momentum). The misad-
justment of the estimates of the random variables’ conditional first moments by the (con-
strained) Kalman filter from Proposition 4 is determined by the sensitivity of µ̃t|t to
period-t shocks to zt, which is captured by a bounded expression

∂µ̃t|t

∂εz,t
= B̃t ∈ [0,1).

Thus, the receptiveness to observation noise, and the resulting misadjustment, arises in
some cases (0 < ∂µ̃t|t,k/∂εµ,t,k < 1, ∀k ≤ k⋆).

8The usage of filtering/signal extraction methods to deal with learning tasks is common in the literature
(e.g., see Veronesi, 1999, 2000, for the case of discretely distributed signals; or Pástor and Veronesi, 2003,
for continuously distributed random variables case). But, to the best of our knowledge, Teixeira et al.
(2008) is the only relevant reference proposing a somewhat similar to ours modification of the standard
Kalman filter.
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Proof. Same as the proof of Corollary 1.

Therefore, the upshot of implementing the learning process—that is, in the case when
the capacity constraint actually allows learning—by means of the (constrained) Kalman
filter is that even though the Kalman gain reacts to shocks, it does so less than one-for-
one. On the one hand, this leads to only a partial reaction to changes in the underlying
parameter of interest, so full “digestion” of news takes time (Corollary 1). On the other
hand, this engenders a non-zero reaction to noise, which results in erroneous changes in
parameter estimates that are unwarranted by the underlying fundamentals (Corollary 2).

3 Discussion
As a result of the solution to sub-problems PI and PT , each element k of zt+1 is trans-
formed (“simplified”) in one of the three possible ways (listed below in the order of in-
creasing demands for capacity, starting with κT and then following with κI):9

(i) mean µ̂k,t+1|t is not updated at every t > 1 and is fixed at its long-run level µ̂k,t+1|t :=

µ̂k, while variable ẑk,t+1 is non-stochastic and is fixed at its mean µ̂k,t+1|t = µ̂k;

(ii) mean µ̂k,t+1|t is updated at every t > 1, while variable ẑk,t+1 is non-stochastic and is
fixed at its mean µ̂k,t+1|t;

(iii) mean µ̂k,t+1|t is updated at every t > 1, while variable ẑk,t+1 is stochastic and dis-
tributed as N (µ̂k,t+1|t, σ̂

2
k,t+1|t).

It is the first two cases that interest us in this paper.10 Here, the conceptually crucial
role of simplification is manifested in dropping some random variables from the agent’s
approximating model (following the random variable’s “dispersion folding” Corollary 1
in Verstyuk, 2017). Due to the effects of entropy/variance reduction (resulting in over-
confidence and, in turn, categorization), such random variables are replaced with non-
stochastic objects, that is by their—sufficiently biased—means.11

For example, in a bivariate case the capacity-constrained agent treats the “folded” ran-
dom variable as non-stochastic and ends up working with a simple univariate approximate
model. Say, when a bullet (“projectile”) is shot at a certain angle with a certain speed,
classical Newtonian mechanics stipulates how to model and predict its motion towards the
target based on the initial velocity/mass as well as the wind speed/direction. However, in

9Cf. spike-and-slab variable selection (Mitchell and Beauchamp, 1988; George and McCulloch, 1993;
Madigan and Raftery, 1994), as well as least absolute shrinkage and selection operator, or Lasso (Tib-
shirani, 1996).

10One interesting variant of the third case is examined in Verstyuk (2017).
11Note that this is a mechanism similar to the sparsity logic in Gabaix (2016b), albeit derived by

different formal means.
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the “first approximation”, we can ignore the wind drift; thus reducing two fundamental
factors/forces (plus noise that represents the factors we have abstracted away from, e.g.
force of gravity, Coriolis force, Magnus effect, etc.) to one factor (plus noise, but now with
the other factor subsumed into it too). As a result, we obtain a simplified model, where
the less important “causal branches” of the driving forces are (subjectively) “pruned”.

Another role of simplification is manifested in updating the estimates of the random
variables’ first moments by the constrained Kalman filter, which reacts to shocks less than
one-for-one, if at all. This is a mechanism for implementing the parameter learning in a
way that is conceptually consistent with a broader framework, and which allows to deal
with rich dynamics enabled by a non-i.i.d. environment.12

The resulting learning dynamics produces “underreaction” to a random variable’s
mean changes, as the Kalman gain reacts to them only partially (i.e., “stickiness”, or “in-
ertia”). It also produces “overreaction” to a random variable’s measurement/observation
shocks (“overshooting”, or “momentum”). In this paper, we are interested in the “stick-
iness” phenomenon, particularly with respect to productivity process zt; and we ignore
the issue of “overshooting” here.13

Such a nuanced assortment of effects implied by the learning processes has important
macroeconomic implications. First, “folding” and ignoring the dynamics of positively
autocorrelated random variables suggests an answer to the so-called Deaton’s paradox.
While permanent income hypothesis (Friedman, 1957) provides an argument why agents’
consumption is empirically found to be less volatile than their current income, Campbell
and Deaton (1989) uncovered the fact that consumption instead “underreacts” to perma-
nent income shocks (“excess smoothness of consumption puzzle”).14 From the perspective
of our approach, though, this can be explained by the agent’s “folding” of the positively
correlated, i.e. long-lasting and in some sense permanent, income-shocks variable. (Which

12Note that the dynamics of slow, or even completely absent, updating of the mean could have been
modeled differently. Here it is implemented as a parameter learning problem performed via the (con-
strained) Kalman filter.

Alternatively, it could have been obtained as an information acquisition/observation problem by apply-
ing the canonical “rational inattention” theory—which penalizes the costs of observing realized random
variables—to signals about the realization of the mean. (Although canonically in the literature it is
applied to realizations of random variables themselves.) Arguably, in the specific application considered
here our formulation seems more plausible (and tractable beyond the linear Gaussian case).

13“Stickiness” produces a (subjective) “hysteresis” effect: agents perceive random variables’ moments
as more persistent than they really are (or their distributions as “more identical” than they really are);
for example, here this applies to productivity process zt. “Overshooting” may produce another kind of
(objective) “hysteresis” effect: an initial, exogenous shock may lead to further, endogenous shocks of the
same sign; e.g., in an asset pricing application whenever asset demand depends positively on the above
random shocks, thus generating a positive feedback loop from (subjective) fundamentals to (objective)
prices.

14To be precise, they find, in some sense, “excess sensitivity of consumption” to income innovations;
but accounting for the fact that income innovations are persistent, that sensitivity is not strong enough,
ultimately resulting in “excess smoothness”.
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is consistent with Campbell and Deaton’s, 1989, original call for rationalizing these find-
ings with some mechanism that generates slow adjustment of consumption to innovations
in income, such as liquidity constrains (see e.g. Carroll, 2001) or inertia/habit formation
(Campbell and Cochrane, 1999; Carroll et al., 2000; Fuhrer, 2000). Note, however, that
our mechanism for “underreaction” differs from that of canonical habit-formation, even
though their theoretical effects (and, presumably, empirical manifestations) look quite
similar.)

Second, “folding” and failing to update the dynamic parameters of negatively autocor-
related random variables suggests a reason for the effectiveness of fiscal policy. Ricardian
equivalence (see Barro, 1974, for its first modern formulation) states that a rational agent
anticipates the fact that expansionary fiscal policy necessarily implies compensatory fis-
cal contraction in the future, leaving the permanent income unchanged; hence such an
agent saves rather than consumes the income sourcing from the fiscal stimulus. In our
framework, though, a capacity-constrained agent may (choose to) ignore this temporal
regularity and effectively “underreact” to a predictable future reversal; as a result he gets
“fooled” by such oscillating transitory shocks, which in turn induces the potency of fiscal
policy.

Lastly, it is worthwhile to emphasize that the effects of learning (“stickiness”/“inertia”)
and variance-reduction (“folding”) each produce a kind of (subjective) “dampening” effect
on the stochastic dynamics of the model’s exogenous variables, being the source of deci-
sion rules and decision outcomes that depart from “full rationality”. See Gabaix (2016a,
2016b), Cochrane (2016), Angeletos and Lian (2016, 2017), Farhi and Werning (2017) for
potential explanatory power of such dampening.

4 Numerical exercise
The economic idea is that an agent turns a blind eye to, or “folds” and ignores the
evolving dynamics of, one stochastic source of income; thus (rationally) misinterpreting
its current source and future consequences, which ultimately results in effective/non-
neutral fiscal policy (i.e., violation of Ricardian equivalence). Technically, the idea is that
the agent treats as constant the mean of the above income source, and thus reacts only to
a materialized shock (income/resources), but not to a change in conditioning information
(new state). The latter would have allowed to anticipate the decline in the next period’s
mean (due to negative autocorrelation), but otherwise the agent is influenced by the
stimulus.

We restrict the number of production functions-technologies to K = 3. The first
technology is a standard productive technology.

The second technology is key in this paper, it embodies a lump-sum government fiscal
transfers process as a proxy for fiscal policy. Within the model introduced above, it is
implemented by fixing K2,t−1 and L2,t for all t at some constant values (we chose these to
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be 1). Setting Ž1 to a positive value (we use 1) and the autoregressive coefficient ρ2 in Aµ

to a negative value ensures the government budget balance over the long term, as positive
transfers are eventually offset with negative ones. The constrained agent knows that the
conditional distribution reflects the long-run budget balance restriction, but because of
the information-processing costs chooses to ignore this regularity and fixes the mean of
z2 at its unconditional long-run level.

The third technology represents storage/savings stockpile (or investments in riskless
bonds), where the agents can preserve goods without any risk, but where they can not
borrow from. This is implemented by fixing (Z3,t− Ž3) and L3,t for all t at some constant
values (here, 1); then, K3,t is a non-negative control variable. The third technology is
introduced so as not to force investments in the first technology following a negative
wealth shock.

An interesting situation that we focus on is based on the following qualitative struc-
ture (quantitative values of the parameters used are presented in Tables D.1 and D.2 of
Appendix §D). First, the variance of the first technology is much larger than that of the
second one.

Second, the mathematical operations capacity κT is binding to the extent that the
constrained agent when making decisions does not update the mean of z2,t and fixes it
at the constant long-run level (so, k⋆ = 1). The stochastic evaluation capacity κI is not
binding though, hence the corresponding variance remains unchanged (so, Σ̂z,2 := Σz,2,
and thus µ̂2,t := µ̃2,t).15

The model’s optimality and steady state conditions are available in Appendix §C.
Model solutions that are presented below were obtained numerically, by a second-order
perturbation (e.g., see Fernáández-Villaverde et al., 2016).16 (These numerical results are
still preliminary.)

Now, we consider the effect of a “large” positive fiscal transfer shock (“stimulus”) at
period t = 2 followed by a “large” negative fiscal shock (“payback”, i.e. tax) at some
distant period t = 7. (Technically, these shocks arise as impulses to εµ1,2.) The above
“large” shocks overlay a sequence of “small” mean-zero shocks, resulting in the empirical
autoregressive coefficient of -0.5 over the full simulated time series of z2,t (i.e., in line
with the theoretical value ρ2 := −0.5 in Table D.2). (All other shocks are zero through-
out, which completes the stochastic structure of zt.) Figure 1 contrasts the reactions of

15Note that in the interest of higher transparency, we do not take the logic of capacity limits further
to a case when both capacity constraints are binding, including the stochastic evaluation capacity κI

to the extent that the agent “folds” z2,t, simplifying it to a non-stochastic object and fixing it at the
(adjusted) long-run mean (which would have implied Σ̂z,2 = 0, i.e. Σ̂εµ0,2 = Σ̂εµ1,2 = Σ̂εz,2 := 0; and
thus µ̂2,t := µ̃2,t − µ̌2,t). For instance, this spares us of the need to find an optimal value of the mean of
ẑ2,t.

16An exact closed-form solution is available whenever the standard formulation admits one; but in the
multivariate case with a non-i.i.d. log-Normal productivity and a capital depeciation rate less than 1,
which is necessary for practically sensible results, even the standard problem does not admit a closed-form
solution.
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Figure 1: Simulation of a fiscal transfer scenario (an impulse response over a selected interval):
decisions and outcomes of unconstrained (solid) vs. constrained (dashed) agents
(in the top three rows), agents’ corresponding observed variables (fourth row),
unobserved state variables (circles) with agents’ corresponding inferences (fifth row)
(parameters used given in Tables D.1 and D.2;
remaining endogenous variables Ct, L1,t, K1,t and K3,t initialized at steady-state values;
exogenous random variables µt and zt are 0 except for the shocks described in the text).

the constrained (with k⋆ = 1) and the standard, unconstrained (k⋆ = 2) agents. (No-
stimulus counterparts result in “boring” flat dynamics for both kind of agents, Figure E.1
in Appendix §E features such a baseline scenario.)

Comparing constrained and unconstrained agents’ learning and decision, as well as
the eventual economic outcomes, we find the following differences:

(i) the constrained agent does not update his estimate of z2,t’s conditional mean (middle
panel in the last row);

(ii) consumption of the constrained agent is higher than that of the unconstrained one
following a positive fiscal transfer;

(iii) consumption of the constrained agent is relatively less smooth;
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(iv) savings in the storage technology K3,t are relatively lower for the constrained agent
(right panel in the third row);

(v) investments into productive technology K1,t are relatively higher in the short-run
but lower in the medium-run for the constrained agent (left panel in the third row);

(vi) labor paths emulate those of K1,t (left panel in the second row);

(vii) output and wealth of the constrained agent are relatively higher in the short-run
but lower in the medium-run.

Summarizing the key results, we emphasize the following ones. First, when learning
the current state, the constrained agent (who has k⋆ = 1 and Σ̂z,2 = Σz,2) does not ascribe
the increase in z2,t to a change in µ1,2,t due to the εµ1,2,t shock. Instead, the agent takes it
as a positive wealth shock, and allocates the extra resources to higher consumption and
more investments into productive capital. Second, due to these learning inaccuracies that
result in “second-best” decisions, the constrained agent fares worse in the medium/long
run (which is not the case in the no-shocks baseline, where no new information has to be
processed).17,18

These results reflect, in some sense, the violation of Ricardian equivalence: the con-
strained agent ignores the fact that the positive fiscal transfer will have to be repaid, so
the increase in output does not reflect an increase in permanent income and should not
be directed to consumption.

Such systematic, “forced” mistakes play a role in the short run; but if they become
large enough to affect the long-run outcomes, eventually they do get corrected (to the
extent permitted by available capacity). The constrained agent ignores the dynamics in
the mean of z2,t only if the dynamic system he based his solution of the informational
and learning problem PT I on remains unperturbed. Otherwise, the agent may choose
to re-solve the informational and learning problems afresh. For example, the situation
when the government resorts to a stimulating fiscal policy to the extent that public debt
sustainability issues arise translates within our framework to a regime change with a shift
in the second moment Σεµ or a jump in the first moment parameter µ0,2,t; the resulting
accumulation of decision mistakes would exceed the threshold of Proposition 1 and would
prompt the agent to re-solve the problem PT I .

Before finishing, a couple of remarks are in order. First, in our ”proof-of-concept”
demonstration we are mostly concerned about a qualitative picture. However, quantita-
tive magnitudes of the effects are potentially substantial. In particular, with the param-
eterization considered in our numerical exercise, “fiscal multipliers” for the consumption

17There is no government consumption in our setting, so a classical “crowding-out” effect does not
apply. But the “second-best” economic outcomes discussed above can be thought of as somewhat similar
kind of efficiency losses.

18Lastly, when interpreting Figure 1, note that even though the income effect dominates the substitution
effect in our application (as γ > 1), without shocks to Z1,t it does not play a role.
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of a constrained agent are well above 1 (and easily reach 5 on some horizons).19 Second,
the fiscal transfer effects considered in our numerical simulation exercise are state/regime-
dependent: under parameterization considered here, they turn out to be stronger at times
of economic bust (operationally implemented via negative shocks to Z1,t, following the
standard definition of a recession as two periods of negative growth; not shown on plots
above). That said, the results mentioned in these finishing remarks are merely suggestive,
and more research is warranted.

5 Conclusion
This study shows how the limitations in information processing of economic agents (consumers-
investors-workers) affect their decisions and resulting economic outcomes. Specifically, we
focus on the problem of learning the evolving parameters/current state, which in the con-
text of a relatively standard stochastic growth model with government transfers leads to
a violation of Ricardian equivalence and engenders the potency of fiscal policy.

Some scope for further macroeconomic applications and generalizations is given below.
Firstly, here the government borrowing is assumed to be done from outside of the economy
(say, foreign markets), but the mechanism survives and should have a qualitatively similar
effect if the borrowing is done from the agents themselves.

Secondly, a similar mechanism can generate monetary policy non-neutrality. Further-
more, note that such a model would not suffer from the so-called forward guidance puzzle
of DSGE models (Del Negro et al., 2012), which imply a counterfactual hypersensitivity
of economic outcomes in the near term to announcements about monetary policy in the
very distant future.

19So-called “fiscal multipliers” are not some structural parameters, but rather empirial or theoretical
sensitivities/“elasticities” that are conditioned on economic specifications, parameter values, the relevant
equilibrium, realized state, etc. Traditionally, a fiscal multiplier is defined as ∑t+T

s=t (Ys−Y )/
∑t+T

s=t (Gs−
G), where the activity measure Ys is usually output or consumption, fiscal instrument Gs is usually
government expenditures or taxes/transfers, and variables without time subscripts are some benchmarks
such as steady-state values. When horizon T is “low”, we are speaking of impact/instantaneous/period
multipliers, when T is “high” we call them summary/integrated/cumulative multipliers.
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A Generalized information processing capacity
As mentioned in the main text, two complexity concepts used in this work—time com-
plexity and communication complexity/entropy—are in some cases equivalent and can be
mapped into each other. Hence, it is natural to consider a setup with common information-
processing capacity bound utilized both for updating the conditioning parameters by P 
and P∨, which appear in the learning problem PT , as well as for evaluation of expectations
by P∫ , which appears in the informational problem PI , thus establishing a meaningful
trade-off and introducing the issue of efficient capacity allocation between two auxiliary
sub-problems.

Usually, these complexity concepts are defined initially in discrete terms: this is con-
ceptually simpler, and also has more solid mathematical foundations, at least in the case
of information-theoretic formulations (see Arora and Barak, 2009; Cover and Thomas,
2006). However, their continuous counterparts are often introduced due to the latter’s
higher analytical tractability.

In the case of communication complexity, dealing with higher quantization (fineness)
of probability space requires more communication operations, and taking quantization
to the limit produces continuous objects that are convenient analytically. In the case of
time complexity, dealing with richer parameterization of the economic system requires
more mathematical operations, and taking parameterization to the limit would similarly
produce asymptotical objects that are convenient to work with.

Throughout this Appendix, we adopt the formulations in discrete terms for easier
exposition and higher transparency. Thus, we stay with the low-parameterization pre-
limit model as far as the learning problem is concerned; as to the informational problem,
we are also dealing with discrete random variables and with the corresponding definition
of information-theoretic notions such as Shannon entropy (which, for instance, implies
that the entropy measure stays on a [0,∞) range).

However, in the main text, where we disentangle two complexity concepts, we resort
to continuous formulations in the case of communication complexity/entropy and the
informational problem in the interest of analytical convenience, but we work with dis-
crete formulations in the case of time complexity and the learning problem due to their,
arguably, higher economic plausibility and interpretability.

A.1 Formulation
The information processing capacity can be utilized for performing (i) operations with de-
terministic objects, dealing with—possibly stochastic, but already realized—parameters
that are taken as given (in our case used for learning/updating the conditioning parame-
ters); and (ii) operations with stochastic objects, dealing with—not yet realized—random
variables that are viewed as exhibiting non-degenerate stochasticity (in our case used
for evaluation of expectations). Now we present a unified approach to quantifying the
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complexity of these two information-processing tasks.
Fundamentally, this equivalence/reduction becomes possible due to an intrinsically

algorithmic nature of time complexity, connecting it to Solomonoff-Kolmogorov-Chaitin
complexity notion (for definition, see Rissanen, 2007), which is in turn intimately related
to Shannon entropy (for details, see Leung-Yan-Cheong and Cover, 1978).

Capacity accounting: Extending the approach of Verstyuk (2017, Appendix §F) and
keeping the same notation as there, available full computation channel capacity KC (as-
suming it is responsible for the binding constraint) can be allocated between the demands
of two tasks above:

KC ≥
¶
T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1)× log |A|

©
+ (A.1)

+
¶
nι

Ä
n̂d × I(g̈(zt+1|µ̃t+1|t); ḧ(ẑt+1|µ̂t+1|t)) + overhead

ä©
,

where the second term on the right-hand side is unchanged from Verstyuk (2017) (except
that zt+1 and ẑt+1 now have non-constant means), while the first term is the measure of
complexity of updating the conditional means.

Specifically, object I(g̈(·); ḧ(·)) is a mutual information between the input distribution
g̈(·) and the output distribution ḧ(·), and it is measured in bits. Object T (µ̃t+1|t, µ̂t+1|t∥·)
is the number of primitive arithmetic operations required to update the specified parame-
ters, and after scaling by the codeword length log |A| (which is determined by the “native”
alphabet A used for all operations), the output of such operations is also measured in bits.
Thus, available full computation channel capacity KC is measured in bits (per period).

Rearrainging, we can formulate the (generalized) information processing capacity con-
straint

AT × T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1)+

+I(g̈(zt+1|µ̃t+1|t); ḧ(ẑt+1|µ̂t+1|t)) ≤
KC

n̂d × nι

− overhead

n̂d

=: κ, (A.2)

where κ denotes effective information processing capacity bound, and where the leading
constant equals

AT :=
log |A|
n̂d × nι

.

A.2 Corresponding optimization problem
A more general complexity/information processing problem is

min
B̃t,f̈(·,·)

Ef
t

î
d(v♯(Kt, zt+1,µt+1|t+1), v(Kt, ẑt+1, µ̃t+1|t+1))

ó
{PT I+}

subject to the information processing capacity constraint

AT × T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1) + I(g̈(zt+1|µ̃t+1|t); ḧ(ẑt+1|µ̂t+1|t)) ≤ κ
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(as well as the necessary technical restrictions).
Forming the usual Lagrangian functional, minimization with respect to B̃t requires

∂L
∂k

:= 0

(by accounting for the number of non-zero elements of B̃t, together with those of µ̌t+1, as
given by expression for time ({P ,P∨}) in §2.2; and with the ordering of B̃t’s elements
as, e.g., in Proposition 4). Minimization with respect to f̈(· , ·) requires

δL
δf̈(x, x̂)

:= 0.

These two first-order conditions define the trade-off between two uses of the capacity
resource; and together with the capacity constraint they allow to solve for the interior
optimum in B̃t and f̈(·, ·), as well as to obtain the quantities

T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1)
∣∣∣∣
B̃t(k⋆),f̈⋆(·,·)

=: κT ,

I(g̈(zt+1|µ̃t+1|t); ḧ(ẑt+1|µ̂t+1|t))
∣∣∣∣
B̃t(k⋆),f̈⋆(·,·)

=: κI ,

where κT denotes what can be understood as an effective mathematical operations capac-
ity bound, and κI an effective stochastic evaluation capacity bound.

The solution gives 0 ≤ κT ≤ κ♯
T < ∞ and 0 ≤ κI ≤ κ♯

I < ∞ for some no-longer-
binding (sharp) upper limits κ♯

T and κ♯
I (but with −∞ < κI ≤ κ♯

I < ∞ in the main text
due to scaling particularities of the differential entropy that is used there). In the interior
solution case both of the above first-order conditions hold with equality.

The capacity bounds κT and κI used in two disentangled complexity constraints of
the main body can be understood as if they were obtained by solving the problem above.
(Note, however, that in the main body’s §2 we focus on a relatively more interesting
situation in which both of the capacity bounds are non-trivial, i.e. located away from the
lower limits of the admissible range.)

B Some formulas for stochastic relationships
The following relationships between original/unconstrained and simplified/constrained
stochastic objects hold.

Definitions of random variables:

zt+1 := Azµt+1 + εz,t+1 = Azµt+1|t +Azζµ,t+1|t + εz,t+1 =

= Azµ̃t+1|t +Azζ̃µ,t+1|t + εz,t+1,

ẑt+1 := Azµ̂t+1 + ε̂z,t+1 = Azµ̃t+1|t +Azζ̂µ,t+1|t +Azµ̌t+1 + ε̂z,t+1.
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Definitions of conditional simplified/constrained means:

µ̂t+1 := µ̃t+1|t + ζ̂µ,t+1|t + µ̌t+1,

µ̂t+1|t := Eh
t

î
µ̂t+1

ó
= µ̃t+1|t + µ̌t+1.

Definitions (with some notation abuse) of conditional means/states’ misestimates
(note that µt+1|t and µ̃t+1|t are known at period t):

ζµ,t+1|t := µt+1 − µt+1|t,

ζ̃µ,t+1|t := µt+1 − µ̃t+1|t,

ζ̂µ,t+1|t :=
¤�µt+1 − µ̃t+1|t.

Definitions of conditional variances:

Υµ,t+1|t := Vg
t

î
ζµ,t+1|t

ó
,

Υ̃µ,t+1|t := Vg
t

î
ζ̃µ,t+1|t

ó
,

Υ̂µ,t+1|t := Vh
t

[
ζ̂µ,t+1|t

]
.

Definitions of approximation errors (note that states’ misestimates ζµ,t+1|t and ζ̂µ,t+1|t

form an additional shock term and eventually enter the “broad” approximation error):

ϵµ,t+1|t := ζµ,t+1|t − ζ̂µ,t+1|t,

ϵz,t+1 := εz,t+1 − ε̂z,t+1.

Variance decompositions for random variables:

Σz,t+1|t = Σ̂z,t+1|t +Ψz,t+1|t;

Σz,t+1|t = AzΥµ,t+1|tA
ᵀ
z +Σεz,

Σ̂z,t+1|t = AzΥ̂µ,t+1|tA
ᵀ
z + Σ̂εz.

Variance decomposition for conditional means/states:

Υµ,t+1|t = Υ̂µ,t+1|t +Ψµ,t+1|t.

Variance decomposition for shocks:

Σεz = Σ̂εz +Ψεz.

Variance decomposition for approximation errors:

Ψz,t+1|t = AzΨµ,t+1|tA
ᵀ
z +Ψεz.
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C Optimality and steady state conditions
The Largangian functional for problem PKT I produces the following first-order necessary
conditions:

0 =:
∂L
∂K1,t

= −uC(Ct,Lt) + βEh
t

î
vK1(Kt, ẑt+1, µ̃t+1|t+1)

ó
,

0 =:
∂L
∂K3,t

= −uC(Ct,Lt) + βEh
t

î
vK3(Kt, ẑt+1, µ̃t+1|t+1)

ó
,

0 =:
∂L
∂L1,t

= uL(Ct,Lt) + uC(Ct,Lt)ŵ1,t;

as well as the corresponding envelope conditions:

vK1(Kt, ẑt+1, µ̃t+1|t+1) := uC(Ct,Lt)(r̂1,t + (1− δ1)),

vK3(Kt, ẑt+1, µ̃t+1|t+1) := uC(Ct,Lt)(r̂3,t + (1− δ3)).

The optimality conditions then include 2 Euler equations and 1 labor supply equation

ϖC−γ
t = βEh

t

î
ϖC−γ

t+1(r̂1,t+1 + (1− δ1))
ó
,

ϖC−γ
t = βEh

t

î
ϖC−γ

t+1(r̂3,t+1 + (1− δ3))
ó
,

Lη1
1,t = ϖC−γ

t ŵ1,t;

plus returns on capital and wage rate from the firm’s problem

r̂1,t+1K1,t = α1Y1,t+1,

r̂3,t+1K3,t = α3Y3,t+1,

ŵ1,tL1,t = (1− α1)Y1,t;

as well as the budget constraint (with k ∈ {1, 2, 3})

Ct + 1ᵀKt = (r̂t + (1− δ))ᵀKt−1 + ŵᵀtLt = Ŵt;

where also K2,t = L2,t = 1 and L3,t = 1 for all periods t.
Or, in a shorter form, for all t,

C−γ
t = βEh

t

ñ
C−γ

t+1

Ç
α1

Y1,t+1

K1,t

+ (1− δ1)

åô
,

C−γ
t = βEh

t

ñ
C−γ

t+1

Ç
α3

Y3,t+1

K3,t

+ (1− δ3)

åô
,

L1+η1
1,t = ϖC−γ

t (1− α1)Y1,t,

Ct +
3∑

k=1

Kk,t =
3∑

k=1

Yk,t +
3∑

k=1

(1− δk)Kk,t−1,

1 = K2,t = L2,t = L3,t.
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Finally, the above results also yield the steady state conditions:

1 = β

Ç
α1

Y1

K1

+ (1− δ1)

å
,

1 = β

Ç
α3

Y3

K3

+ (1− δ3)

å
,

L1+η1
1 = ϖC−γ(1− α1)Y1,

C =
3∑

k=1

Yk −
3∑

k=1

δkKk.
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D Parameter values used

Table D.1: Parameter Values Used in Simulations: Deep Parameters.
Parameter Description Value

β subjective discount factor/time preference rate 0.99
ϖ (inverse) marginal disutility of labor 0.1
γ coefficient of relative risk-aversion 2
η (inverse) Frisch elasticity of labor supply [0.5; 0.5; 0.5]

α output elasticity of capital/capital’s share of output [0.67; 1.00; 1.00]

δ depreciation rate [0.03; 0.00; 0.00]

Ž [0; 1; 1]

Table D.2: Parameter Values Used in Simulations: Additional Parameters.
Parameter Description Value

ρ autoregressive coefficient for state µt [0.9;−0.5; 0.0]

Σεµ0 upper var-cov submatrix of εµ,t shock to µt diag([0; 0; 0])

Σεµ1 lower var-cov submatrix of εµ,t shock to µt diag([0.022; 0.012; 0.00])

Σεz var-cov matrix of εz,t shock to productivity zt diag([0.022; 0.012; 0.00])

κT effective mathematical operations capacity bound [19; 122)

κI effective stochastic evaluation capacity bound −4.8

In the last Table, κT is calculated using formula (1) for k = 1: (4+1+2+2+8)+(2)=19;
and for k = 2: (32+2+16+4+64)+(4)=122.

While κI , which we have assumed to equal κ♯
I , is calculated using formula

I(g(zt+1|µ̃t+1|t);h(ẑt+1|µ̂t+1|t)) = E(g(zt+1|µ̃t+1|t)) =
1

2
ln

∣∣∣2πe ÄAzΥµ,t+1|tA
ᵀ
z +Σεz

ä∣∣∣ = −4.8 nats.
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E Baseline scenario simulations (for comparison)
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Figure E.1: Simulation of a baseline scenario (over a selected interval):
decisions and outcomes of unconstrained (solid) vs. constrained (dashed) agents
(in the top three rows), agents’ corresponding observed variables (fourth row),
unobserved state variables (circles) with agents’ corresponding inferences (fifth row)
(parameters used given in Tables D.1 and D.2;
remaining endogenous variables Ct, L1,t, K1,t and K3,t initialized at steady-state values;
exogenous random variables µt and zt are 0).

F Proof of Proposition 1
Proof. The Proposition statement defined

ςs:t−1 :=
1

t− s

t−1∑
ι=s

∣∣∣v(Kι, ẑι+1, µ̃ι+1|ι+1)− Eh
ι

î
v(Kι, ẑι+1, µ̃ι+1|ι+1)

ó∣∣∣ ,
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where both components of each summation term are fully observed. Then the probability
of a large deviation can be bounded by

Pr (ςs:t−1 ≥ ςa) ≤
Eg [ςs:t−1]

ςa
≈ ς0:s−1

ςa
,

where we have utilized the Markov’s inequality (also see Chernoff, 1952, bound), and
approximated an unknown population moment with its sample counterpart that is based
on observations from 0 to s − 1, i.e. those collected right after the model’s last (re-)
solution.

Hence, rejecting the hypothesis that the (null) model is still valid upon exceeding
threshold ςa will be an erroneous decision (Type-I error) with probability not higher than
ς0:s−1/ςa. Increasing the threshold will reduce the chance of an erroroneous decision.
Specifically, a Type-I error rate of a× 100% requires setting ςa to ς0:s−1/a.

Finally, rejection of the hypothesis implies re-solution of problem PT I .

G Proof of Proposition 2
Proof. First, we are using the assumption on the validity of replacement of the value
function with the wealth variable (as is the case when one is proportional to another).
Wealth Wt+1 here equals (rt+1 + (1 − δ))ᵀKt +w+1t

ᵀLt+1. Its stochastic component is
rᵀt+1Kt +wᵀt+1Lt+1, i.e., aggregate output ∑

k Yk,t+1.
Next, we express wealth in continuous time as follows (see Verstyuk, 2017; this ap-

proximation is related to Campbell and Viceira, 2002a). Let productivity evolve as

dZt := d exp(zt) := diag(Zt)(Azµt +
1

2
diag−1(σεzσ

ᵀ
εz))dt+ diag(Zt)σεzdBεz,t,

where σεz is such that σεzσ
ᵀ
εz = Σεz, and Bεz,t is a standard K-dimensional Brownian

motion.
Increasing time interval to dt = 1 and utilizing the fact that the mean of Zt+1 is fixed at

t+1 (it is a “predictable process”) produces the following continuous-time approximation
to discrete-time stochastic dynamics:

Zt+1 −Zt ≈ diag(Zt)(Azµt+1 +
1

2
diag−1(σεzσ

ᵀ
εz))dt+ diag(Zt)σεz(Bεz,t+1 −Bεz,t).

Subtracting from the above expression its constrained counterpart

Ẑt+1 −Zt ≈ diag(Zt)(Azµ̂t+1 +
1

2
diag−1(σ̂εzσ̂

ᵀ
εz))dt+ diag(Zt)σ̂εz(Bεz,t+1 −Bεz,t).

gives

Zt+1 − Ẑt+1 ≈ diag(Zt)

Ç
Azµt+1 −Azµ̂t+1 +

1

2
diag−1(σεzσ

ᵀ
εz)−

1

2
diag−1(σ̂εzσ̂

ᵀ
εz)+

+ σεz(Bεz,t+1 −Bεz,t)− σ̂εz(Bεz,t+1 −Bεz,t)

å
=:

=: diag(Zt)(zt+1 − ẑt+1 +Azµ̌t+1).
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But of course, since µt is unobserved, a more relevant expression for dZt is

dZt := diag(Zt)(Azµt|t +
1

2
diag−1(σζµσ

ᵀ
ζµ) +

1

2
diag−1(σεzσ

ᵀ
εz))dt+

+ diag(Zt)(σζµdBζµ,t + σεzdBεz,t),

adding another layer of risks (and extending the notation in an obvious manner, except
perhaps that σζµσ

ᵀ
ζµ = Υµ,t+1|t); and thus

Zt+1 −Zt ≈ diag(Zt)(Azµt+1|t +
1

2
diag−1(σζµσ

ᵀ
ζµ) +

1

2
diag−1(σεzσ

ᵀ
εz))dt+

+ diag(Zt)(σζµ(Bζµ,t+1 −Bζµ,t) + σεz(Bεz,t+1 −Bεz,t)),

with the corresponding modifications to constrained counterparts, and so on.
Note that in the calculations that follow we use instead of µt+1|t the object µ̃t+1|t (with

the necessary corrections to volatilities). Technically, to allow the means to cancel out;
economically, to avoid the complexity of computing both objects.

Then we have

Wt+1 − Ŵt+1 = (Y t+1 − Ŷ t+1)
ᵀ1 =

= Zᵀt+1(K(Kt−1, zt,µt|t)
α ⊙L(Kt, zt+1,µt+1|t+1)

1−α)−
− Ẑᵀt+1(K(Kt−1, ẑt, µ̃t|t)

α ⊙L(Kt, ẑt+1, µ̃t+1|t+1)
1−α) ≈

≈ (Zt+1 − Ẑt+1)
ᵀ(K(Kt−1, zt,µt|t)

α ⊙L(Kt, zt+1,µt+1|t+1)
1−α) ≈

≈ (zt+1 − ẑt+1 +Azµ̌t+1)
ᵀ(Zt ⊙Kα

t ⊙L1−α
t+1 ).

In the above equation, the penultimate approximate equality used the second assumption
that the differences in second-order effects of Zt+1 and µt+1|t+1 as compared to Ẑt+1 and
µ̃t+1|t+1 on wealth via labor (and similarly for capital) are “small”, and are dominated by
the first-order effect (Zt+1 − Ẑt+1).

Using the third assumption about minimization of maximum loss for any possible
combination of control and state variables entering the term (Zt⊙Kα

t ⊙L1−α
t+1 ) produces

the claimed result (following an argument similar to Verstyuk, 2017):Ä
Wt+1 − Ŵt+1

ä2
≈
Ä
(zt+1 − ẑt+1 +Azµ̌t+1)

ᵀ(Zt ⊙Kα
t ⊙L1−α

t+1 )
ä2 ∝

∝ (zt+1 − ẑt+1 +Azµ̌t+1)
ᵀ(zt+1 − ẑt+1 +Azµ̌t+1)

Above, we have defined the conditional mean µ̂t+1|t of a random variable ẑt+1 as

µ̂t+1|t := µ̃t+1|t + µ̌t+1,

where the bias term is

µ̌t+1 :=

 0K×K

1
2
diag−1(Σz,t+1|t − Σ̂z,t+1|t)

 .
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H Proof of Proposition 3
Proof. Complexity problem comprises

min
B̃t,f(·,·)

Ef
t

î
||zt+1 − ẑt+1 +Azµ̌t+1||22

ó
= tr(Ψz,t+1|t)

subject to constraints

T (µ̃t+1|t, µ̂t+1|t∥zt, µ̃t|t−1) ≤ κT ,

I(g(zt+1|µ̃t+1|t);h(ẑt+1|µ̂t+1|t)) ≤ κI .

Expanding the terms gives

zt+1 − ẑt+1 +Azµ̌t+1 = Azµt+1 + εz,t+1 − (Azµ̂t+1 + ε̂z,t+1) +Azµ̌t+1 =

= Azµt+1|t +Azζµ,t+1|t + εz,t+1 −
(
Azµ̃t+1|t +Azζ̂µ,t+1|t + ε̂z,t+1

)
=

= Azϵµ,t+1|t + ϵz,t+1.

Note that we replace µt+1|t with µ̃t+1|t throughout (adding the necessary corrections to
other related terms), which spares the agent from the complexity of computing both
objects.

Then (conditionally on t) the variance-covariance matrix is

Ef
t

î
(zt+1 − ẑt+1 +Azµ̌t+1)(zt+1 − ẑt+1 +Azµ̌t+1)

ᵀó = AzΥµ,t+1|tA
ᵀ
z +Σεz−

−
Ä
AzΥ̂µ,t+1|tA

ᵀ
z + Σ̂εz

ä
=

= AzΨµ,t+1|tA
ᵀ
z +Ψεz

(this decomposiiton is verified by the subsequent solution to PI), yielding

min
B̃t,f(·,·)

Ef
t

î
||zt+1 − ẑt+1 +Azµ̌t+1||22

ó
⇐⇒ min

B̃t,f(·,·)

¶
tr(AzΨµ,t+1|tA

ᵀ
z +Ψεz)

©
.

Now we get to the actual argument. On the one hand, taking µ̃t+1|t as given, mini-
mizing the problem’s criterion with respect to its second argument requires:

min
f(·,·)

Ef
t

î
||zt+1 − ẑt+1 +Azµ̌t+1||22

ó
= tr(Ψz,t+1|t),

i.e. solving PI .
On the other hand, taking the solution to PI (as well as the parameter values) as

given, further reduction of AzΨµ,t+1|tA
ᵀ
z +Ψεz amounts to reducing AzΥµ,t+1|tA

ᵀ
z +Σεz,

that is the (conditional) variance of zt+1:

min
B̃t

¶
tr(AzΥµ,t+1|tA

ᵀ
z +Σεz)

©
⇐⇒ min

B̃t

Ef
t

î
||Azζµ,t+1|t + εz,t+1||22

ó
However, by orthogonality of ζµ,t+1|t and εz,t+1 (as well as admitting any value of Az),
this is equivalent to

min
B̃t

Ef
t

î
||µt+1 − µ̃t+1|t||22

ó
= tr(Υµ,t+1|t);

29



which in turn boils down to

min
B̃t

Ef
t

î
||µt − µ̃t|t||22

ó
= tr(Υµ,t|t),

i.e. to solving PT .

I Proof of Proposition 4
Proof. Updates of the components of vector µ̃t|t (and eventually, µ̃t+1|t) are produced by
non-zero elements of B̃t. Exploiting the independence of shocks driving the stochastic
process for productivity zt (as well as equal costs of a component’s partial and full update),
it is optimal to allocate the capacity κT starting from the largest diagonal element of
matrix Υµ,t|t. Thus in the optimum, the minimizer B̃t is determined by the ordering of
its elements’ contributions to volatilities in matrix Υµ,t|t.

Subsequent updates of the components of vector µ̂t|t, which is the reason for updat-
ing µ̃t|t in the first place, similarly depends on the number of non-zero elements of µ̌t

(eventually, µ̂t+1|t and µ̌t).
The number of operations required to update k elements of vector µ̃t|t (actually, µ̃t+1|t)

is ((2k)2)k+ k+ (k2)2k+2k+ (2k)3 (following the equations in P ; note that Υµ,t|t−1 as
well as Υµ,t|t, and hence B̃t are constants, hence do not require updating each period).
Then, the number of operations required to update k elements of vector µ̂t|t (actually,
µ̂t+1|t) is 2k (using its definition, P∨, from Proposition 2; note that Σz,t+1|t, Σ̂z,t+1|t as
well as Ψz,t+1|t, and hence µ̌t+1 are constants and do not require updating). The sum of
these two quantities gives the number of operations required to update k largest elements
of vectors µ̃t|t and µ̂t|t (eventually, µ̃t+1|t and µ̂t+1|t). We want to make k as close to its
upper bound K as resources κT allow, which gives the stated solution.
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