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Abstract

This paper studies the problem of decision-making under risk by agents whose
information-processing abilities may be limited. The theoretical approach taken
here relies on economic laboratory experiments, neuroscientific findings, and infor-
mation-theoretic formalism. The derived mechanism for processing information can
be built into the Lucas tree model, a general equilibrium macro-finance workhorse.
It simplifies, though also distorts the agent’s subjective perspective of the objec-
tive stochastic environment. The former converges to the latter when information-
processing capacity is sufficiently large (inducing standard “rational expectations”);
but in a more realistic case of bounded capacity, certain rational biases of percep-
tion emerge endogenously. The most non-trivial one is caterogization: it implies
dropping from consideration the less important principal dimensions (“dispersion
folding”) and amplifying the random variables’ interdependencies (“correlation in-
flation”). This result helps explain the existence of and variations in the practice
of style investing in financial markets.
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The limits of my language mean the limits of my world.
—Ludwig Wittgenstein

1 Introduction
In this paper, we study a canonical economic problem of consumption-investment choice
under risk when the agent’s computational, or information-processing, capabilities are
bounded. Finding a good decision is burdensome, hence striving for the first-best may
not always be worth the efforts. Because cognitive resources are scarce, the decision-
making process itself can be viewed as a trade-off between closeness to the optimal choice
and the costs of getting ever closer to it.

Borrowing from information theory and neuroscience, we can model these information-
processing capabilities as a capacity (or bandwidth) of a “communication channel” in the
brain that passes information between its different regions involved in decision-making.
There are several equivalent ways to depict how our agent evaluates a random lottery, a
particularly intuitive one is to model his/her processing of the relevant information as the
following three-stage process: (i) importing the given random variable’s probability distri-
bution into the brain; (ii) drawing realizations from this distribution in a Monte Carlo-type
experiment; and (iii) transmitting these realizations via a communication channel to sum
them up and eventually calculate the statistics of interest.

The upshot is that due to communication channel’s capacity limits, some informa-
tion is lost in transmission. Specifically, each random draw has to be represented by a
shortened encryption code, which effectively amounts to replacing the original random
variable’s probability distribution with its coarse approximation. The benefit is that us-
ing an approximate probability distribution “simplifies” a given “complex” optimization
problem just enough for the agent to be able to solve it. The cost is that the informa-
tion loss implies that the approximating distribution exhibits less uncertainty—or, loosely
speaking, dispersion—than the original probability distribution.

We formalize the communication channel capacity by a so-called “mutual information
constraint” on the channel’s input and output messages. While the uncertainty that char-
acterizes a random variable is measured by the “entropy” of its probability distribution.
This is standard in information theory, and is also used in the “rational inattention”
theory proposed by Sims (1998, 2003, 2006). The difference is that in Sims’s case the
transmitted information are new signals about the agent’s external environment, while
here these are intermediate results of his internal computations.

As an illustration of the differences, consider the following example. There is a fruit
tree that lives for one year, with known probability distribution of its future fruit crop.
In our case, in Spring you need to decide whether you want to buy the whole future crop.
Making this decision requires you to process information about the distribution, which is
costly, so you may prefer using not the complex true distribution but some simple proxy
distribution when making the decision. You choose such a proxy distribution. Then in
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this same Spring you buy the future crop. In Sims’s case, you are also buying the crop,
but you do it later. In Spring you need to decide how you will be gathering information
about the fruit crop once it appears. Gathering information is costly, so in this same
Spring you choose future information acquisition strategy that will imperfectly inform
you about the crop. Then in Fall you gather the information and buy the crop.1

The above-mentioned reduction in uncertainty of the agents’ approximating distribu-
tion is consistent with people’s choices of random lotteries that have been demonstrated
in laboratory experiments like those conducted by Gabaix and Laibson (2000). How-
ever, such a “forced” distributional distortion requires from a rational agent an appro-
priate counter-response. For example, in our consumption-investment application within
a stochastic Gaussian setting, the entropy reduction is manifested in lowered variance of
the distribution, which in turn can be compensated by a decreased mean, so that the
resulting decisions do not systematically deviate from the optimal ones. We refer to the
former effect as “overconfidence”, and to the latter as “pessimism”.

The main contribution of this study is the derivation of what we call “categorization”
effect. It results from the entropy-reducing simplification in a multidimensional case, and
works as follows:

(i) eigen-values of the variance-covariance matrix are decreased, so that less crucial
random variables/data dimensions they represent become non-stochastic and drop
out (“dispersion folding”), thus simplifying the approximating problem;

(ii) diagonal elements of the variance-covariance matrix are decreased, so that pairwise
correlation coefficients they underlie become amplified (“correlation inflation”), thus
clustering covaried random variables together in the approximating problem.

As a result, different categories of stochastic objects appear, or become more prominent in
agents’ perception: for example, in case (i) approximate “models of the world” arise that

1More concretely, rational inattention theory of Sims also uses the mutual information constraint to
formalize the costs of information transmission, but there are fundamental differences with the approach
taken here. Conceptually, Sims’s theory restricts the agent’s external perceptions and focuses on uncer-
tainty about the current state, while this paper deals with constraints on the agent’s internal cognition
and centers on uncertainty about the future state. Operationally, in rational inattention models the
state has already realized but is not yet observed, and the agent, before observing the state and making
a decision, chooses an optimal information acquisition strategy that lets him learn the realized state as
accurately as his limited capacity allows, which in turn implies that every period nature is sending to an
agent the information about one realization of a random variable. While in the present paper the state
has not yet realized, and the agent, before making a decision and before realization of the state, chooses
an optimal information processing strategy that lets him summarize/represent the space of possible states
as accurately as his limited capacity allows, which in turn implies that every period one part of agent’s
brain is sending to another part of agent’s brain the information about the whole probability distribution
of a random variable. Thus, the differences are in the timing of events, the object of approximation,
the task faced by the agent, the players and interactions involved, as well as in the dimensionality of
transmitted messages. See Appendix §F for more details about the difference.
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are distinct from the original and include a smaller set of random variables; in case (ii)
distinct capital asset classes become pronounced whose constituents’ small within-class
variation is neglected in the face of large between-class differences. Behavior consistent
with categorical perception is supported by the experimental and neuroscientific evidence,
e.g. see Goldstone and Hendrickson (2010) or Fleming et al. (2013). This result is also
surprisingly attuned with Herbert Simon’s perspective on bounded rationality (see Simon,
1997).

Categorization, as well as overconfidence and pessimism, are popular theoretical mech-
anisms in economics and finance. However, instead of imposing them exogenously as has
usually been the case so far, in our framework they are derived from structural foundations
and so emerge endogenously.

Another contribution is an extension of the Lucas (1978) tree model, which is a micro-
founded general equilibirum workhorse for capital assets in macroeconomics and finance.
We allow for a more general expectations formation process than in the classical formula-
tion, dropping the “rational expectations” assumption in its strongest form and explicitly
modeling the information-processing side of the problem. It is reassuring to see that
recognition of the information-processing constraints does not undermine the conven-
tially accepted results. Conveniently, the presented formulation is also as tractable as the
classical model, similarly admitting analytical closed-form solutions in special cases.

Lastly, this study contributes to the literature on modeling bounded rationality, in
particular on the usage of information-theoretic methods in economics. Even though our
main result can be obtained in a bare-bones stylized toy model, we attempt to show how
information-processing mechanisms relying on mutual information constraint could be
built into a conventional structural macro model. (For instance, this task is still a work
in progress for rational inattention models beyond the linear-quadratic case.)2

An intuitive theoretical prediction produced by our framework is that agents with
lower information processing capacity are more susceptible to categorization. On the
empirical side, an example of categorization behavior is a practice in financial markets
known as style investing. It comprises analytical activity and market trading conducted
in terms of aggregate asset classes, and implies an increased (that is, over and above the
levels that can be attributed to certain fundamentals) comovement between investments
into assets that belong to the same asset class. As predicted, available empirical findings
confirm that relatively less sophisticated retail investors exhibit stronger evidence of such
excess comovement than more professional institutional investors do.

The present research is connected to several distinct literature clusters, and their ex-
haustive review is beyond the scope of this paper (an abbreviated overview is offered in

2Finishing the list of theoretical results, the take-aways of a relatively more auxiliary nature and
technical flavor include a convenient method for description/encoding of probability distributions (see
§E); as well as an introduction of the formal distinction between effective and physical information
processing capacities, which explains some confusing empirical measurements (see §E and §G).
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Appendix §C). The most closely related works are the following. Gabaix (2014a, 2014b)
proposes a similar approach to the simplification of the environment, which envisages
discrete and sparse representation of data. The rational inattention theory (Sims, 2003,
2006; Matějka and Sims, 2010; Matějka and McKay, 2014; Ravid, 2016) has success-
fully introduced information-theoretic methods into economics; it also uses the channel
capacity constraint to model the transmission of information, although in a structurally
different form and with different aims (see the text above, as well as Appendix §F).
Woodford (2012, 2014) departs from the rational inattention theory and uses the channel
capacity mechanism while taking related neuroscientific and experimental evidence very
seriously, which makes our papers quite closely interconnected. Alternative theoretical
models that consider simplification and categorization have been formulated, albeit taking
the latter as exogenously pre-determined (e.g., Mullainathan, 2002b; Jehiel, 2005). The
application considered here is based on the exchnage economy due to Lucas (1978), whose
rich asset pricing implications were carefully studied further by Martin (2013). Empirical
illustrations in this paper come from the finance area, they are mostly related to the
style investing literature such as Barberis and Shleifer (2003) or Peng and Xiong (2006).
Other works in this area similarly concerned with the expectation formation process and
likewise motivated by existing psychological evidence along with the agents’ desire for
simplification are Fuster et al. (2012) and Bordalo et al. (2016) (also see an older work
by Carroll, 2003; as well as a recent survey by Manski, 2017).

2 Theory
In this part, we present some results of the laboratory experiments that would motivate
the mechanics of our information-processing framework, then we broadly formalize such
information-processing mechanics in terms of information theory, and lastly we define the
specific formal mechanism that can be readily incorporated into a broader theoretical
economic framework.

2.1 Simple lotteries, hard decisions
Our aim here is to examine how decisions under risk3 are made in a setting where the
relevant probability distributions are “too complex” to be used in the agent’s optimization
process.

As a motivating example, consider the following decision problem. Figure 1 presents
the payoffs and their corresponding probabilities for two simple lotteries. In principle,
from the information given one can calculate all the necessary characteristics of the payoff
distributions. For instance, a risk-neutral player cares only about the mean, which is
just a probability-weighted sum of each lottery’s payoffs — a very simple computation.

3We use the terms “risk” and “uncertainty” interchangeably throughout.
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Lottery 1

1

3
5

6 7
9

10

12
.40

.05
.15 .10 .05 .10

.05
.10

Lottery 2

0

2
3

4 6
9

12

15
.05

.10
.35 .25 .05 .05

.10
.05

Figure 1: Two lotteries (payoffs (circled) with their probabilities (over contigency edges)).

A player with a mean-variance utility function cares about the first two moments of the
payoff distributions — a slightly more involved computation. But what if these arithmetic
operations, however elementary they are, can not be performed in full? Say, because of a
time constraint: think of having only 1 second per contingency, i.e., 16 seconds to choose
between the two lotteries (in case you tried it, see the footnote4).

Formally, the problem looks as follows:

max
θ∈{1,2}

E [φ(ϱ(x|θ))] , (1)

where the state vector x is distributed as x ∼ G(x), the lottery choice θ ∈ {1, 2}, the
payoff function ϱ(x|θ) depends on the chosen lottery, and φ(ϱ) is a player’s decision
criterion (i.e., some kind of felicity function). The player sees all the payoffs as well as
the probabilities and has to estimate the expected payoff (strictly speaking, its expected
felicity) under the time constraint.

Gabaix and Laibson (2000) investigated a more complicated version of the same prob-
lem in laboratory conditions with human subjects. They found that a simple heuristic
rule that ignores the less probable lottery branches most accurately matches the empirical
distribution of choices, in particular, outperforming the fully rational model of behavior.5

Effectively, the above heuristic reduces the computational costs of evaluating the ex-
pectation in (1) by carefully changing the distribution of the random variable in focus to
one with lower “complexity” at the cost of some “approximation error”.

4The lottery on the right has higher mean (5.0 vs. 4.9) and lower variance (14.5 vs. 14.6).
5Specifically, Gabaix and Laibson (2000) use multinomial recombining trees, each consisting of 10 root

nodes and 4 to 9 levels of leaf nodes that are connected by probabilistic edges, with intermediate payoffs
in every node; the goal is to select a root node with the highest expected value. Their paper proposes
the following heuristic for evaluating the tree payoffs: consider only transit probabilities larger than a
certain cutoff probability and calculate the expected payoff ignoring the less probable edges (it is required
that the payoffs have a zero mean, and there are no extreme outlier payoffs). The authors interpret this
decision rule as simulating the future by identifying typical or representative scenarios. They conduct
an experiment where human subjects have to evaluate 12 such trees within 40 minutes, and compare the
explanatory performance of their proposed rule against several alternative algorithms.
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2.2 Algorithm for decision-making under risk
Our next task is to formalize this idea of complexity reduction that simplifies the problem
of decision under risk.

Ignoring the low-probability decision branches as above implies a reduction in a cer-
tain characteristic of the probability distribution associated with the decision outcomes,
namely its entropy. Entropy is a measure of uncertainty of a probability distribution; it
can be related to distribution’s dispersion and thought of as its complexity. Formally, in
Shannon’s sense entropy of a discretely distributed random variable x is defined as

E(g(x)) := −
|supp(g)|∑

i=1

g(xi) log g(xi), (2)

where |supp(g)| is the cardinality of the support set of g(·).6 In the case of continuous
space of outcomes, the so-called differential entropy just invokes integration in place of
summation. Units of measurement are either bits (when the logarithms of base 2 are
used), or nats (for natural logarithms), with 1 nat := log2 e ≈ 1.44 bits.7

For example, consider a probability mass function (PMF) g(·) for a random vari-
able x that constitutes some state variable such as a country’s real GDP growth rate
or a company’s revenues (or perhaps a lottery’s outcome, along the lines of §2.1). Fig-
ure 2 presents such a variable that envisions six possible realizations with probabilities
{1/8, 1/8, 1/4, 1/4, 1/8, 1/8}, which implies the entropy of 2.5 bits (irrespective of numeric re-
alization values). For a given decision-maker, such a distribution may be too complex to
deal with, so he is bound to operate in terms of a simpler distribution. That is, to define
only a few possible scenarios: “baseline”, “positive” and “negative”. In other words, to
“categorize” out of six fine partitions of the probability space just three coarser ones (thus
ignoring some of the contingencies in line with §2.1). In Figure 2 this is illustrated by a
simplified PMF h(·) for a random variable x̂ that allows for just three different realizations
with probabilities {1/4, 1/2, 1/4}, implying a reduced entropy of merely 1.5 bits.

While from a statistical perspective the entropy of a random variable is some mea-
sure of its dispersion, there is another side to the coin. From the information-theoretic
perspective, entropy of a random variable is the average length of code that can be used
to efficiently carry information about the variable’s outcomes. For instance, the fact that
the complex distribution g(·) has the entropy of 2.5 bits means that respective average
codeword length is the same 2.5 bits. Indeed, such a binary alphabet would be {000,
001, 10, 11, 010, 011} for the corresponding realizations of the random variable x; with
codewords “10” and “11” each used on average two times more frequently than any of
the codewords “000”, “001”, “010” and “011”. On the other hand, the simplified distri-
bution h(·) with its entropy as well as the average codeword length of 1.5 bits admits a

6We use log(·) for log2(·) and ln(·) for loge(·) throughout.
7Shannon entropy is a concept originating in the information theory. For a textbook treatment of the

information theory, see Cover and Thomas (2006) or MacKay (2003).
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x, x̂

g(
x)

,  
h(

x̂)
Figure 2: Entropy reduction primer

(higher-entropy PMF g(·) (in grey) vs. lower-entropy h(·) (in black)).

more compressed alphabet {00, 1, 01} for the realizations of x̂, thus achieving a shorter
representation of the contingencies.

In turn, such a code-based perspective permits us to quantify the demands on the
computational resources (or, more broadly, on the information processing capacity) and
to construct an explicit mechanism underlying the decision-making process. The mecha-
nism’s main ingredient, the process of mental evaluation of a lottery, can be represented
by the formal algorithm that we (very briefly) outline next.

The algorithm’s mechanics is visualized in Figure 3, which provides the flowchart with
pseudocode. It starts in the top left corner with a given distribution g(x) together with the
necessary initializations, and finishes in the bottom left corner with a calculated lottery’s
expected value Eh[x], going through the following information-processing stages:

(i) the compression of the given information about the lottery distribution (via a com-
munication channel transmitting the corresponding description, see an arrow marked
with IA(g;h) in Figure 3);

(ii) the loading and providing access to this information within a working memory (al-
located in the memory storage, see a box marked with n̂d ×MA(h) in Figure 3);

(iii) the calculation of lottery’s value (via a communication channel transmitting inter-
mediate iterations of such computations, see an an arrow marked with IA(h;h) in
Figure 3).

At any of these three stages, depending on which of the capacity constraints is binding
(description channel capacity, storage memory capacity, or computation channel capac-
ity), an information processing “bottleneck” may arise. Such bottlenecks on the way of
information flow can preclude the procedure’s smooth completion that is necessary for
the lottery’s evaluation (and ultimately for making an optimal decision). The constraint
posed by the tightest bottleneck is precisely the reason for replacing the complex distri-
bution g(·) with a simpler h(·): the latter distribution allows for shorter codewords than
those required for the former. (The functional IA(· ; ·) stands for mutual information
between two probability distributions, the input and the output, and it is a standard
measure of communication channels’ capacity; we will return to it later.)
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codebooks,
global n̂d;
i, j := 1,
S0 := 0.

send xi,
encode. {x̂j}j−1

1 concat x̂j j
?
= n̂d

i := i+ 1,
j := j + 1.

store {x̂j}n̂d
1 ,

j := 1.
n̂d ×MA(h)

send x̂j

decode,
Sj := Sj−1 +

1
n̂d

x̂j .j
?
= n̂d

j := j + 1

Eh[x] := Sn̂d

IA(g;h)

yes

no

IA(h;h)

yes

no

Figure 3: Information processing algorithm primer (potential bottlenecks shown in bold).

The leading illustration of such a bottleneck is probably item (ii) above, memory and
its capacity, which is relatively well studied in neuroscience (see Appendix §G) as well
as recognized as an important concept in the economic literature (see Appendix §C for
examples). Specifically, cognitive psychology and neuroscience define working memory as
a limited capacity system that temporarily maintains and stores information to support
human thought processes by providing an interface between perception, long-term memory
and action (Baddeley, 2003).

We outlined above just a primitive problem of evaluating a simple lottery.8 Analo-
gous structural approach provides a recipe for the evaluation of expectations of arbitrary
functions of random variables, as well as their maximization, as required by a canonical
problem of decision-making under risk. Moreover, for all of these tasks, and regardless of
which of the three potential bottlenecks is actually the relevant one, the corresponding
restriction can be equivalently formulated in terms of a communication channel capacity,
or “mutual information”, constraint (elaborated in the next part). Appendix §E develops
the formal algorithm in detail, and Appendix §F offers an intuitive overview of its key
features.

2.3 Information constraint and informational problem
In the previous part §2.2, we have amended the standard economic optimization problem
with an explicit information-processing mechanism. Now our goal is to (i) introduce and

8Which we formalize as ancillary procedure P∫ .
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analyze the formal constraint that a simplified distribution h(·) should satisfy for any
given complex distribution g(·); and (ii) develop a disciplined way of choosing among
many candidate distributions h(·) the one most suitable for the job at hand.

On that account, the algorithm presented earlier quantifies the computational costs
of solving a stochastic optimization problem. An exogenously given bound on these
costs allows to formulate an information-processing capacity or, equivalently, a mutual
information constraint (in short, an information constraint):

I(g(x);h(x̂)) := E(g(x)) + E(h(x̂))− E(f(x, x̂)) ≤ κ (3)

(note the switch to random vectors, typed in boldface).
To clarify the notation, mutual information I(g(x);h(x̂)) is defined in terms of entropy

E(·), it is familiar from §2.2. A constant κ is a capacity bound, and it is measured in bits.9

The probability density h(x̂) is a simplified proxy for a given original probability density
g(x), where the copy can be exact if the original density is already simple enough. While
f(x, x̂) above is an ancillary function that captures the overall structure of stochastic
interrelationships in the problem. It is a joint multivariate probability density function
of x, which is distributed according to its marginal density g(x), and of x̂, which in turn
is distributed according to marginal density h(x̂); f(x, x̂) density’s role is to account for
all possible contingencies of x vis-à-vis x̂.

Intuitively, information constraint (3) trades-off how fine [coarse] probability measure
h(x̂) is (middle term of the equation’s right-hand side) versus how [in]accurate approxima-
tion of x by x̂ is (rightmost term), taking g(x) (leftmost term) as given. Put differently,
with g(x) fixed, to satisfy the information constraint one can either (i) reduce the en-
tropy of h(x̂) by making it a coarser probability measure, or (ii) increase the entropy
of f(x, x̂) by making x̂ a less accurate approximation of x. Note that this is exactly
what the heuristic of Gabaix and Laibson (2000) amounts to in the end: a simplified
distribution characterized by lower entropy at the cost of some approximation error. In
addition to the experimental findings of Gabaix and Laibson (2000), such behavior is also
in agreement with neuroscientific evidence on humans’ categorical perception (Goldstone
and Hendrickson, 2010; Fleming et al., 2013).10

9It is important to emphasize that κ is a measure of effective capacity, in contrast to available full
physical capacity K∗ which in principle may be orders of magnitude larger. Recognizing the practically
unavoidable inefficiencies in capacity utilization (in particular, due to suboptimal information encoding)
may explain the—at first sight, implausibly—low empirical measurements of implied information pro-
cessing capacity (going all the way back to the classical Miller, 1956, whose very title “The Magical
Number Seven, Plus or Minus Two” reflects how small the estimates of such capacity in bits often are).
See Appendix §E for more details.

10As an alternative intuition, with the complexity of a random variable x fixed, one can reduce the
information-processing costs by letting x being only imperfectly represented by a variable x̂ and carry
some random approximation errors via raising the entropy of the conditional distribution of x given
x̂: we can write I(g(x);h(x̂)) = E(g(x)) − E(f(x|x̂)); e.g., in Figure 2 knowing the realization of
x̂ leaves a half-half chance of guessing the realization of x. Equivalently, if a random variable x̂ is
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To clarify the terminology, henceforth we refer to the original random variable x and
its probability distribution g(x) as to “true”, objective, unconstrained; while labeling the
simplified random variable x̂ and its distribution h(x̂) as “approximating”, subjective,
constrained objects.

Next, the agent is interested in minimizing the losses due to the presence of information
constraint. Thus arises the complexity-related information processing or, alternatively,
the evaluation-optimization problem (in short, the informational problem), PI :

min
f(x,x̂)

Ef [d(x, x̂)] =
∫
supp(h)

∫
supp(g)

d(x, x̂) f(x, x̂) dx dx̂ {PI}

subject to the information constraint

I(g(x);h(x̂)) ≤ κ, [λ]

as well as the necessary technical restrictions (hereafter not listed explicitly)∫
supp(h)

f(x, x̂) dx̂ = g(x) ∀x ∈ supp(g), [µ(x)]

f(x, x̂) ≥ 0 ∀x ∈ supp(g), x̂ ∈ supp(h) [ν(x, x̂)]

(Lagrange multipliers on each constraint are specified on the right in square brackets).11

Here, our agent seeks to minimize the expected “distortion” from using the approx-
imating distribution h(x̂) instead of the true distribution g(x) subject to information
constraint. The distortion function d(x, x̂) is taken as given: it is formulated as a dis-
tance metric between the values of its two arguments, and is a kind of a “loss function”
that measures the shortfalls in felicity due to using a distorted probability distribution.
(The choice of appropriate distortion function is problem-specific, we will discuss it later
in part §3.1.4; think of it as the utility achieved versus the utility that could hypotheti-
cally be achieved absent the information-processing costs.) The technical restrictions just
ensure that the resulting h(x̂) is a proper probability distribution.12

Solution to problem PI is provided in Lemma 1.
simple enough, then there is no need for further entropy reduction, and mutual information may be
equated with entropy of x̂ by letting the distribution of x̂ conditionally on x being degenerate with zero
entropy, in the sense that a variable x contains all the information about a variable x̂: we can also write
I(g(x);h(x̂)) = E(h(x̂))− E(f(x̂|x)); e.g., in Figure 2 knowing x makes x̂ a certainty.

11It may be worth emphasizing: while the information constraint has the same form as in Sims (2003,
2006), in the current study it has a different motivation (more on this in §1 and §F); hence the addition
of the informational problem with its distortion minimization (introduced here in §2.3), as well as the
subordinated place of the informational problem in the hierarchy of decisions (made clear later in §3.1).

12In terms of Appendix §E’s algorithm, our understanding is that in practice the informational problem
is solved before Generating codebook at the Simplification step of the algorithm. Basically, this is the
fundamental source of information-processing cost savings that we ultimately benefit from: by bearing
the fixed costs at the Simplification step, the variable costs are saved in the following steps of the
algorithm, which may lead to dramatic overall savings as the latter costs accumulate very quickly during
the numerous iterations required to execute the remaining steps. This rules out a kind of “infinite regress”
critique.
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Lemma 1 (General Solution to Informational Problem). Let x be a random vector dis-
tributed according to an absolutely continuous probability distribution function G(x) with
a probability density function g(x), also let d(x, x̂) be a distortion function for vectors x

and x̂ satisfying the condition

∃ x̂ :
∫
supp(g)

d(x, x̂) g(x) dx <∞.

Then solution to the informational problem specified in PI is given by a conditional
probability density

f(x|x̂) = exp

Ç
1

λ
ν(x, x̂)− 1

λ
µ(x)− 1

λ
d(x, x̂)

å
, ∀x̂ ∈ supp(h).

Proof. See Appendix §D.1.

This is an established result in information theory. The problem constitutes a well-
posed convex minimization. The general solution involves Lagrange multipliers, but those
can be identified in a more concrete setting. The form of the solution may look counter-
intuitive at first: g(x) is known and we are looking for h(x̂), but the solution provides a
conditional distribution of x. However, the key is to realize that the conditional distribu-
tion of x given x̂ is actually the distribution of approximation error, i.e., the deviation of
the original random variable x from its simplified counterpart x̂. This indeed suffices for
recovering the sought solution.13 Later in §3.3 we will demonstrate how this can be done
with an example.

Quite sensibly, whenever the information constraint does not bind, the expected dis-
tortion can be reduced to zero. That is, f(x|x̂) becomes the Dirac delta function centered
at x̂ then. Looking at it from the economics perspective, density h(·) coincides with g(·),
thus inducing familiar “rational expectations” (more on this comes later).

Lastly, we claim that the following property holds.

Lemma 2 (Flexible Mean Property). Problem PI always admits the solution such that
Eh[x̂] + µ̌ = Eg[x] (provided the latter exists) for any bias µ̌ ∈ G, where G is some
sufficient (extension) field for domain(g).

Proof. Trivially, the information constraint restricts only the mutual information between
the random variables x and x̂, which depends on the range but not the domain of prob-
ability density functions.

13Given the knowledge of g(x), it is often easier to proceed by just guessing the density h(x̂), which
we are chiefly interested in, and then verifying that, together with the deduced conditional distribution,
the implied joint density f(x, x̂) := f(x|x̂)h(x̂) satisfies the necessary requirements.
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Thus, Lemma 2 allows to treat the mean of the simplified random variable, Eh[x̂], as a
free parameter in the formulation of problem PI and as some exogenously defined control
in the corresponding solution from Lemma 1.

In the following part, we embed this information-processing mechanism into a concrete
model economy.

3 Model

3.1 Two-period preview
For an easier exposition, first we formulate a two-period model, and an infinite-horizon
extension follows later.

3.1.1 Economic setup

Consider the following economic setting, which is essentially a variation of Lucas (1978)
tree model. A representative agent with a lifespan of two periods lives in an exchange
economy with opportunities to invest competitively in 1 risk-free and K risky assets.
Risky assets are composed of one-period-lived “trees”. The unit prices and quantities of
shares in the risky trees purchased in period t are denoted by P t and qt, respectively.
The investments in them bring stochastic dividends Dt+1, or “fruits”, at the beginning
of period (t + 1). A K-sized random vector Dt+1 is distributed, given Dt, according to
probability density function gD(Dt+1|Dt). The risk-free asset is also composed of a one-
period-lived tree. The unit price and quantity of shares in the risk-free tree purchased in
period t are denoted by P0,t and q0,t, respectively. The investments in it bring deterministic
dividends D0,t+1, the same type of fruits as above, at the beginning of period (t + 1). A
constant scalar D0,t+1 is normalized to 1. The fruits are perishable, output can not be
stored between periods. We denote by Ct the agent’s time-t consumption, and by u(Ct)

his per-period utility, assumed to have a constant relative risk-aversion functional form,
that is discounted at rate β. This endowment economy comprises Ûq, a strictly positive K-
sized constant vector, of risky trees, whose shares are initially owned by the representative
agent. A risk-free tree is fictitious, the economy comprises Ûq0 = 0 of them, i.e., it exists
in zero net supply and can be thought of as a cash credit technology.

3.1.2 Investment problem

The consumer-investor is interested in solving the following consumption and portfolio
choice problem, Pq:14

max
Ct,{q0,t,qt}

{u(Cs) + βEg
t [u(Ct+1)]} = {u(Cs) + β

∫
RK
+

u(Ct+1) g(Dt+1|Dt) dDt+1} {Pq}

14Henceforth, we omit the probability densities’ subscripts when there is no room for an ambiguity in
understanding.
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subject to budget constraints (for convenience, defining cum-dividend wealth Wt here)

Ct + P0,tq0,t + P ᵀ
tqt = q0,t−1 + (P t +Dt)

ᵀqt−1 =: Wt,

Ct+1 = q0,t +Dᵀ
t+1qt,

control variables’ domain restriction Ct, {q0,t, qt} ∈ R+ × RK+1, with {q0,t−1, qt−1} and
Dt given, with u(Ct) = C1−γ

t /(1− γ), and where

g(Dt+1|Dt) is given.

In words, the representative agent chooses consumption and investment values that
maximize his current and expected future utility that at the same time satisfy the budget
constraints. The expectation is taken with respect to a given objective probability density
function that defines the distribution of the stochastic fruit-dividends (which are produced
by tree-assets the agents invests in, and which are then eaten as consumption goods).

3.1.3 Problem’s infeasibility and feasible alternative

Using the notation introduced previously in §2, finding optimal solution to problem Pq

requires directly maximizing

Eg
t

î
φ♯(x|θ)

ó
:= u(Wt − {P0,t,P t}ᵀθ) + βEg

t [u([1 xᵀ]θ)] ,

with wealth Wt and prices {P0,t,P t} known, as well as with designated state variable
x := Dt+1 and control variable θ := {q0,t, qt}.

Our consumer-investor is assumed to know15 the structure of the problem: i.e., the
exact specification of the utility function u(·), the felicity function φ♯(θ,x), and the distri-
bution g(x) that drives the random variable x and is used in the conditional expectation
operator Eg

t [·]. Nevertheless, in general the problem Pq may be infeasible to solve — po-
tentially it violates the information-processing capacity constraint. Because, even though
the agent obtains g(·) as an input into the algorithm of part §2.2, he may be unable to
execute the full procedure.

Therefore, the agent focuses instead on maximizing

Eh
t [φ(x̂|θ)] := u(Wt − {P0,t,P t}ᵀθ) + βEh

t [u([1 x̂ᵀ]θ)] ,

where

h(x̂) solves PI given d(x, x̂) and κ.

This more general formulation makes it clear that in solving the stochastic optimiza-
tion problem, we are using the subjective probability density h(x̂) in place of the objective
density g(x), with the discrepancy between the two densities depending on the distor-
tion function d(x, x̂) and the available information processing capacity κ. The distortion

15Say, to have learned by time t.
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function d(x, x̂) between the original and simplified random variables is chosen to be just
some reasonable measure of distance in terms of felicities φ♯(x|θ) and φ(x̂|θ). Of course,
a high enough capacity (denote it as κ♯) allows density h(·) not to diverge from g(·),
reducing the distortion to zero. Because the objective function incorporates an additional
constraint, for a given θ-parameter, φ(x̂|θ) lies weakly below the unconstrained φ♯(x|θ).
More explicit formulations can be found in Appendix §H.16

3.1.4 Feasible investment problem

A feasible version of our consumption and investment problem would recognize that the in-
formation constraint may in fact be binding, and combines the consumption and portfolio
choice problem Pq with the informational problem PI . This allows to relax the standard
problem’s idealistic assumptions; but, importantly, is done without loss of generality.

Thus, a feasible version of the consumption and portfolio choice problem, PqI , is
formulated as follows:

max
Ct,{q0,t,qt}

{u(Cs) + βEh
t [u(Ct+1)]} = {u(Cs) + β

∫
RK
+

u(Ct+1)h(D̂t+1|D̂t) dD̂t+1} {PqI}

subject to budget constraints

Ct + P0,tq0,t + P ᵀ
tqt = q0,t−1 + (P t + D̂t)

ᵀqt−1 =: Ŵt,

Ct+1 = q0,t + D̂ᵀ
t+1qt,

control variables’ domain restriction Ct, {q0,t, qt} ∈ R+ × RK+1, with {q0,t−1, qt−1} and
D̂t given, with u(Ct) = C1−γ

t /(1− γ), and where

h(D̂t+1|D̂t) solves PI given d(Dt+1, D̂t+1) and κ,

g(Dt+1|Dt) is given.

The crucial difference from before is that in the feasible formulation of the consumption
and portfolio choice problem the expectation is now taken with respect to the endogenous
subjective probability density function for stochastic fruit-dividends. Which itself has
to be obtained as an optimal (with respect to the distortion metric used) solution to the
auxiliary informational problem. Also, note that in time t, the subjective random variables
D̂t and Ŵt coincide with their objective counterparts (almost surely), but we signify them
with hats nevertheless to preserve notational succession across the time periods.

3.2 Infinite-horizon extension
3.2.1 Economic setup

The economic setting is modified so that a representative agent has an infinite lifes-
pan. Risky assets are composed of infinitely-lived trees. They bring stochastic dividends

16Our understanding is that the solution to the informational problem PI has already been learned by
time t or is just computationally easy relative to the solution of the unconstrained problem Pq.
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Ds+1 at the beginning of period (s + 1). A K-sized random vector Ds follows a time-
homogeneous (stationary) Markov chain defined by transition probability density function
g(Ds+1|Ds) = g(Dt+1|Dt) for all periods s > t. The risk-free asset is still composed of a
one-period-lived tree. Its deterministic dividends D0,s+1 are normalized to 1 for all periods
s > t.

3.2.2 Feasible investment problem

The Bellman equation17 corresponding to the infinite-horizon feasible problem, PQI , is

{PQI}
v({q0,t−1, qt−1}, D̂t) = max

Ct,{q0,t,qt}

¶
u(Ct) + βEh

t

î
v({q0,t, qt}, D̂t+1)

ó©
(PQI-1)

subject to

Ct + P0,tq0,t + P ᵀ
tqt = q0,t−1 + (P t + D̂t)

ᵀqt−1, (PQI-2)

domain restriction Ct, {q0,t, qt} ∈ R+×RK+1, with the same utility function specification
as before, and where (spelling out the relationship to PI explicitly)

h(D̂t+1|D̂t) :=
∫
supp(g)

f(Dt+1, D̂t+1|Dt, D̂t) dDt+1, (PQI-3)

f(Dt+1, D̂t+1|Dt, D̂t) := arg

®
min
f(·,·)

Ef
î
d(v♯({q0,t, qt},Dt+1), v({q0,t, qt}, D̂t+1))

ó
s.t. I(g(Dt+1|Dt);h(D̂t+1|D̂t)) ≤ κ

´
, (PQI-4)

g(Dt+1|Dt) is given. (PQI-5)

Above we denote the maximum value function as v♯({q0,t−1, qt−1},Dt) for the infeasible
unconstrained case, and as v({q0,t−1, qt−1}, D̂t) for the feasible constrained one. In terms
of the notation introduced earlier in §2, now φ♯(x|θ) := v♯(θ,x) and φ(x̂|θ) := v(θ, x̂).

The Bellman equation’s formulation is standard except that the probability density
function hD(·) with respect to which it is defined has been endogenized: now it stems
from (PQI-4), the solution to auxiliary sub-problem PI .18

3.2.3 Distortion function

The solution to PI , referred to in (PQI-4), requires choosing some appropriate distortion
function d(·, ·). Specifying one that is both reasonable in terms of the objective of a larger

17The formulations in terms of a sequence problem for both the infeasible as well as the feasible versions
of this dynamic programming problem are available in Appendix §A.

18Lastly, note that the environment in terms of dynamics and stochasticity is as primitive as possible,
the agent solves the same problem again and again. The task of embedding into our framework non-trivial
inference and updating with regard to g(·) is outside the scope of this paper, and it is pursued elsewhere.
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problem PQI , and convenient to work with analytically, is a laborous task that we attend
to next.

In the interest of clarity, a few points deserve calling attention to. To define a distortion
function that is internally consistent, we rely on the structure of unconstrained investment
problem’s solution (and on that of its constrained counterpart, using the “guess and verify”
approach).

Moreover, for analytical convenience we make a number of assumptions (further details
on them are introduced in due course):

(D1) independent identical distributions of asset returns, and

(D2) log-Normality of asset returns;

(D3) the norm used in a distortion function is L2 (squared),

(D4) the transformation used there is logarithmic, and

(D5) the (endogenous) wealth share parameter used is determined by the requirement to
minimize maximum loss.

To start with, define the new variables, gross returns R0,t+1 and Rt+1, as well as,
preventing any possible confusion, nominal investments y0,t and yt:

Wt+1 = q0,t + (P t+1 +Dt+1)
ᵀqt =:

=: P0,tR0,t+1q0,t + (diag(P t)Rt+1)
ᵀ qt =: (4)

=: R0,t+1y0,t +Rᵀ
t+1yt; (5)

(and similarly, R̂t+1). Also, define the total and tree-specific shares of wealth invested in
risky assets, respectively, Ûωt and ωt:Ûωt := 1ᵀωt := 1ᵀdiag(P t)qt/Wt.

(Here, the function diag(·) takes as an argument a vector and returns a diagonal matrix
with a given vector’s elements on the main diagonal. Later, the function diag−1(·) will
be the corresponding inverse function that takes a diagonal (or just square) matrix and
returns a column vector with the main diagonal’s elements of a given matrix.)

First, realize that the value function has the following form:

v♯({q0,t, qt},Dt+1) = A (Wt+1)
1−γ , (6)

where A := (1− β)−γ/(1− γ); with analogous expression held for v({q0,t, qt}, D̂t+1).19

19We abstract away from the special fact that in the general equilibrium of this particular exchange
economy, v(·) actually attains and equals v♯(·) identically.
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Second, we assume asset returns are i.i.d. rather than just Markovian (D1 above):
g(Rt+1|Rt) := g(Rt+1); as well as log-Normal (D2): g(Rt+1) is logN (µr,Σr).20 For
log-returns defined as rt+1 := lnRt+1 (also reserving r0,t+1 := lnR0,t+1) this means

g(rt+1) is N (µr,Σr) (7)

(we will “reverse-engineer” later what g(Dt+1|Dt) this requires).
Next, given the value function’s form (6), a reasonable choice for the distortion function

in the sense of squared L2 norm (D3) would be d(rt+1, r̂t+1) := ||v♯({q0,t, qt},Dt+1) −
v({q0,t, qt}, D̂t+1)||22. However, given the CRRA functional form, we modify it further
and take logarithms (D4):

d(rt+1, r̂t+1) :=
1

(1− γ)2
|| ln |v♯({q0,t, qt},Dt+1)| − ln |v({q0,t, qt}, D̂t+1)| ||22 =

= (lnWt+1 − ln Ŵt+1)
2. (8)

Lastly, an additional assumption, required only for K > 1 cases, restricts the depen-
dence of d(rt+1, r̂t+1) on ωt by replacing the dependence on exact ωt with agnostic motive
of minimization of maximum loss for any possible ωt (per D5 above). (See Appendix §D.2
for more details.)

Now, we adapt the distortion function’s formulation (8) further, making it even more
convenient for our use.

Proposition 1 (Distortion Function). The above distortion function, in the context of
problem PQI and given the distributional assumptions, can be reformulated as follows:

d(rt+1, r̂t+1) = (lnWt+1 − ln Ŵt+1)
2 ≈

≈ (ωᵀ
t (rt+1 − r̂t+1 + µ̌r))

2 , (P1-1)

where
µ̂r := µr + µ̌r, (P1-2)

is the mean of the simplified random variable r̂t+1, and where

µ̌r :=
1

2
diag−1(Σr − Σ̂r)−

1

2
(Σr − Σ̂r)ωt, (P1-3)

is a bias term, with Σ̂r denoting the variance-covariance matrix for r̂t+1.
Under an additional assumption about the timing of an update of vector ωt (the

requirement to minimize maximum loss), the following refinement can be made:

(ωᵀ
t (rt+1 − r̂t+1 + µ̌r))

2 ∝ (rt+1 − r̂t+1 + µ̌r(Ûωt))
ᵀ(rt+1 − r̂t+1 + µ̌r(Ûωt)) =:

=: d(rt+1, r̂t+1), (P1-4)
20A parametric log-Normal probability distribution is assumed here for analytical convenience, it is just

a theoretical proxy for some non-parametric distribution dealt with in a practically relevant problem.
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where

µ̌r(Ûωt) :=
1

2
diag−1(Σr − Σ̂r)(1− Ûωt) =

=
1

2
diag(σ2

r,1 − σ̂2
r,1, · · · , σ2

r,K − σ̂2
r,K)1(1− Ûωt) (P1-5)

is another bias term.

Proof. See Appendix §D.2.

(From now on, the elements of a matrix are denoted with the same letter as the matrix,
but in lowercase.)

The main aim of the Proposition above is the appropriate form of the distortion
function that we are going to use for the informational sub-problem of problem PQI .
Specifically, the refinement given by equation (P1-4) produces a convenient sum-of-squares
formulation for the (bias-corrected) differences between the true and approximated log-
returns, which will eventually allow us to claim Gaussianity of these differences.21

The Proposition also contains an intermediate result, which stems from the continuous-
time approximation of the wealth dynamics based on the (geometric) Brownian motion.
We would like to cancel out the effect of having replaced the original variance Σr with the
simplified variance Σ̂r so as to ensure the expected growth rate of the simplified log-wealth
ln Ŵt+1 equals that of the original log-wealth lnWt+1. This can be achieved by adjusting
the mean of the simplified random variable µ̂r by a bias term µ̌r, as shown in equation
(P1-2). For positive risky investments and a positive discrepancy between the original
and simplified variances22, the adjustment entails a downward shift (second term on the
RHS of equation P1-3) from the origin point23 (first term). Therefore, we are dealing with
a simplified distribution of log-returns hr(r̂t+1) that is biased, but biased in an optimal,
expected distortion-minimizing way (see Appendix §D.2.1).

The following example can illustrate what is going on. In the case of one risky
asset that is not held in the investment portfolio (i.e., ωt = 0), we have µ̂r = µr +

0.5(Σr − Σ̂r), which leads to matching of the expected values of simplified and true re-
turns, Eh

t [Ŵt+1/Wt] = Eh
t [R̂t+1] = exp(µ̂r + 0.5Σ̂r) = exp(µr + 0.5Σr) = Eg

t [Rt+1] =

Eg
t [Wt+1/Wt]). However, in the case of one risky asset that is the sole constituent of

the investment portfolio (ωt = 1), we have a matching of the means, µ̂r = µr, which
leads to undershooting of the expected return on the simplified portfolio, Eh

t [Ŵt+1/Wt] =

21Note that the refined distortion function depends on the scalar Ûωt only through vector µ̌r(Ûωt); in
other words, given the bias term µ̌r(Ûωt), the solution to the informational problem is invariant to the
chosen value of the bound Ûωt. This fact will be put to work later.

22The latter is shown to be the case later in §3.3.
23This origin point effectively presumes that the simplified wealth indeed follows the dynamics deter-

mined by the simplified rather than the true variance.
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Eh
t [R̂t+1] = exp(µ̂r + 0.5Σ̂r) < exp(µr + 0.5Σr) = Eg

t [Rt+1] = Eg
t [Wt+1/Wt]. The under-

shooting can be interpreted as a “pessimistic” view at the potential investment opportuni-
ties, and such “pessimism” is nothing more than an implication of the simplified variance
being dominated by the original one.24

Remark 1 (Decision-Rule Adjustment vs. Subjective-Perception Adjustment). A more
direct way of correcting for the difference between the original and simplified vairances is
to adjust the decision rules (i.e., policy functions dictating the choice of control variables
Ct, {q0,t, qt}) rather than the subjective perception (i.e., the mean of the simplified distribu-
tion µ̂r). Adjusting the decision rules shifts control variables Ct, {q0,t, qt} directly; which
takes extra (K + 1) adjustment parameters. Adjusting the mean shifts control variables
Ct, {q0,t, qt} indirectly, by affecting the chosen subjective probability density h(D̂t+1|D̂t),
via h(r̂t+1), that control variables are functionally dependent on; which takes extra K

adjustment parameters. Judging in terms of degrees of freedom, the latter option is more
restrictive (lower number of parameters that can adjust), but less computationally greedy
(lower number of parameters that have to be determined).25

Remark 2 (Computational Benefits of Mean Adjustment). It may seem unreasonable
to reduce information-processing costs by using an approximating random variable with a
simplified variance instead of the original one only to increase the burden down the line
by necessitating the manipulations with the bias term (another kind of “infinite regress”
critique). The reason the proposed approach works is because (conditionally on Σr, Σ̂r and
ωt) the bias term µ̌r is a non-stochastic object and possesses zero (in discrete case, −∞
in continuous case) entropy, hence manipulating it is less computationally intensive than
it is in the case of stochastic objects; e.g., consider all the summation operations required
to implement integration. [It can also be understood from a measure-theoretic standpoint
as an issue of dimensionality: the stochastic objects (i.e., random variables as measurable
functions from a space of outcomes to a measurable space) are characterized by a non-
trivial profile on the corresponding measurable space, while zero-entropy objects (i.e., fixed
constants) have a flat profile—if singletons, otherwise flat except a single atom—and the
corresponding space is in some sense degenerate.]

As a last technicality, part of our solution method relies on random variables being
uncorrelated. Decorrelation is achieved using eigenvalue decomposition of the variance-
covariance matrix Σr into a diagonal matrix of eigenvalues Σ and a square matrix of
eigenvectors Ξ; which allows to transform the raw objects rt+1, r̂t+1 and µ̌r(Ûωt) into,
respectively, x, x̂ and µ̌(Ûωt). For details, see Appendix §I; Proposition I.1 there states

24The above pessimism-entailing adjustment is not to be confused with the (quasi) certainty discount
implied by the certainty-equivalent counterpart to a risky asset under expected utility theory. For in-
stance, note that we have isolated out the risk-aversion parameter in equation (8), immunizing the
distortion function from the effect of risk attitude.

25The author thanks Michael Woodford for raising this issue.
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that this decorrelating transformation is innocuous.26

3.2.4 Equilibrium

An equilibrium of the economy formed by the exogenously given economic setting intro-
duced in §3.2.1 and the endogenously chosen optimal solutions to the feasible problem PQI

in §3.2.2 is a collection of a continuous price function {P0(Dt),P (Dt)} : RK
+ 7→ RK+1

+ ,
a continuous and bounded value function v({q0,t−1, qt−1},Dt) : RK+1

+ × RK
+ 7→ R, and

an absolutely continuous joint probability distribution function F (Dt+1, D̂t+1|Dt, D̂t) :

RK
+ × RK

+ 7→ [0, 1] such that:

(i) [consumption and investment optimality] Bellman equation (PQI-1) subject to the
budget constraint (PQI-2), control variable’s domain restriction and with given util-
ity function specification is satisfied;

(ii) [consumption and investment coherence] goods and asset markets clear, i.e.,

Ct = ÛqᵀDt, qt = Ûq, q0,t = Ûq0;
(iii) [informational optimality] joint probability density function fr(rt+1, r̂t+1) solves (uti-

lizing the decorrelating transformation) the informational problem PI with gr(rt+1)

as the true density and κ as the information-processing capacity;

(iv) [informational coherence] probability density functions for dividends f(Dt+1, D̂t+1|Dt, D̂t)

(referred to in equation PQI-4), g(Dt+1|Dt) (referred to in PQI-5) and h(D̂t+1|D̂t)

(referred to in PQI-3) are consistent with the densities for returns f(rt+1, r̂t+1),
g(rt+1) and h(r̂t+1), also the correlated random variables’ densities f(rt+1, r̂t+1),
g(rt+1) and h(r̂t+1) are consistent with the decorrelated variables’ densities f(x, x̂),
g(x) and h(x̂), i.e., ∀Dt+1, D̂t+1 ∈ RK

+ :

f(Dt+1, D̂t+1|Dt, D̂t) = f(rt+1, r̂t+1) = f(Ξx,Ξx̂) = f(x, x̂),

g(Dt+1|Dt) = g(rt+1) = g(Ξx) = g(x),

h(D̂t+1|D̂t) = h(r̂t+1) = h(Ξx̂) = h(x̂).

A policy function determining the optimal investment in tree shares q({q0,t−1, qt−1}, D̂t)

could be added to the list of equilibrium objects, but it is a constant function that is iden-
tically equal to Ûq because the considered economy is an autarky.

Note that the conditions (iii) and (iv) replace the traditional rational expectations
assumption (Lucas, 1978). Otherwise, the notion of equilibrium is standard. The existence
of an equilibrium is proven by constructing its instance, which is done next.

26In terms of Appendix §E’s algorithm, our understanding is that this transformation is performed
when solving the informational problem before the Generating codebook step of the algorithm (the
inverse transformation may be conducted either before or after maximizing the objective function in the
process of solving the consumption and portfolio choice problem).
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3.3 Solution
The consumption and investment segment of the larger problem is fairly standard, so
here we only focus on the crucial elements of the informational part, benefiting from the
distinctly segregated formulations of these two sub-problems. (The full solution to the
feasible consumption and portfolio choice problem PQI is available in Appendix §B.)

Taking the general solution to PI from Lemma 1, exploiting the flexible mean property
due to Lemma 2, using the refined distortion function from Proposition 1, and applying
decorrelating transformation allowed by Proposition I.1 yields:

f(x|x̂) = exp

Ç
1

λ
ν(x, x̂)− 1

λ
µ(x)− 1

λ
(x− x̂+ µ̌(Ûωt))

ᵀ(x− x̂+ µ̌(Ûωt))

å
, ∀x̂ ∈ supp(h).

(9)
Given our knowledge about the probability distribution of x, we can solve for the

whole stochastic structure of the relationship between x and x̂, as shown in the following
Theorem. But an attentive reader has already spotted the kernel of a Gaussian probability
density function in the last equation, which suggests the subsequent direction.

Theorem 1 (Specific Solution to Informational Problem). Let the general solution to the
informational problem, which is specialized to the chosen distortion function and accounts
for the decorrelating transformation, be given by the conditional probability density function
f(x|x̂) from (9), where the random vector x ∼ N (µ,Σ).

Then, the specific solution to the informational problem can take one of two forms,
depending on the magnitude of information-processing capacity κ (equivalently, on the
tightness of shadow price/Lagrange multiplier on information constraint λ):

(a) Interior solution (“large” κ, “small” λ).

f(x|x̂) = (2π)−
K
2

∣∣∣∣∣λ2IK

∣∣∣∣∣
− 1

2

exp

(
−1

2
(x− x̂+ µ̌(Ûωt))

ᵀ
Ç
λ

2
IK

å−1

(x− x̂+ µ̌(Ûωt))

)
, ∀x̂ ∈ RK ;

x = x̂− µ̌(Ûωt) + ϵ,

where

ϵ ∼ N (0,Ψ), Ψ =
λ

2
IK ,

x̂ ∼ N (µ̂(Ûωt), Σ̂), Σ̂ = Σ−Ψ;

λ = 2
Ä
e−2κ|Σ|

ä 1
K .

Interior solution is valid if the following condition holds: σ2
k >

λ
2
, ∀k ∈ {1, . . . , K}.

(b) Boundary solution (“small” κ, “large” λ).

f(x|x̂) = (2π)−
K
2 |Ψ|−

1
2 exp

Ç
−1

2
(x− x̂+ µ̌(Ûωt))

ᵀΨ−1(x− x̂+ µ̌(Ûωt))

å
, ∀x̂ ∈ supp(h);
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x = x̂− µ̌(Ûωt) + ϵ,

where

ϵ ∼ N (0,Ψ), Ψ =



λ/2 0 0 · · · 0
. . . ... . . . ...

0 λ/2 0 · · · 0

0 · · · 0 σ2
k∗+1 0

... . . . ... . . .
0 · · · 0 0 σ2

K


,

x̂ ∼ N (µ̂(Ûωt), Σ̂), Σ̂ = Σ−Ψ;

{σ2
k}K1 := sortdescending({σ2

k}K1 ),

k∗ := arg min
k∈{1,...,K}

{σ2
k | σ2

k >
λ

2
},

λ = 2
Ä
e−2κσ−2

k∗+1 · · ·σ−2
K |Σ|

ä 1
k∗ .

(The last (K− k∗) elements of vector x̂ are to be understood as deterministic scalars,
or alternatively as Dirac delta functions centered at {µ̂k∗+1(Ûωt), · · · , µ̂K(Ûωt)}.)

Boundary solution is valid if the following condition holds: ∃k ∈ {1, . . . , K} : σ2
k ≤ λ

2
.

Proof. See Appendix §D.3.

The qualifiers ‘interior’ and ‘boundary’ in the formulation of the above Theorem
should be understood in relation to the Cartesian product set×K

1
[0, σ2

k]. Figure 4 il-
lustrates the “reverse water-filling” logic of the (boundary) solution of Theorem 1. From
the information-processing perspective, σ2

k (diagonal elements of the original variance-
covariance matrix Σ) represent the total information available for processing, σ̂2

k (diagonal
elements of the simplified variance-covariance matrix Σ̂) represent the information that is
actually processed, while ψ2

k (elements on the diagonal of the variance-covariance matrix
for approximation errors Ψ) represent the information that is omitted and constiutes the
approximation errors; and the solution logic implies “filling” σ2-s with σ̂2-s, proceeding
in “reverse”, from the top to the bottom.

Consider an extreme situation when information-processing capacity is unavailable,
κ→ −∞ (the information constraint is binding with the Lagrange multiplier λ→ +∞):
then no information can be processed, σ̂2

k = 0, ∀k ∈ {1, . . . , K}, while approximation er-
rors are at their maxima, ψ2

k = σ2
k, ∀k ∈ {1, . . . , K}. If κ rises somewhat (the information

constraint is binding, but now the Lagrange multiplier takes a finite value λ < ∞), we
appear in the boundary solution case depicted in Figure 4: then some information can
be processed, σ̂2

k > 0 for certain k, with the corresponding approximation errors subsid-
ing, ψ2

k < σ2
k for these same k. If κ rises a lot more, but with κ < κ♯ (the information
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Figure 4: “Reverse water-filling”.

constraint is still binidng and λ falls even further), a qualitative change in the picture
occurs and we move to the the interior solution case: σ̂2

k = σ2
k − ψ2

k > 0 for all k, with
the approximation errors subsiding even more, ψ2

k < σ2
k for all k, and now also equalizing,

ψ2
k = ψ2

l for all k, l. At the other extreme, κ = κ♯ (the information constraint does not
bind any more and λ = 0): then all the information is processed, σ̂2

k = σ2
k for all k, while

ψ2
k = 0 for all k.27

A non-trivial result here is the following: when information processing capacity de-
creases, the information omissions disproportionally affect the data dimensions with low
informational content (small eigenvalues σ2

k). This has deep economic implications.

Corollary 1 (Specific Solution to Informational Problem: Dispersion Folding). The spe-
cific solution to the informational problem, as given in the statement of Theorem 1, is
characterized by the folded dispersions of the less volatile components of random vector x̂

in the boundary solution case. I.e., the corresponding subjective variances become 0:

σ̂2
k = 0, ∀k > k∗.

Proof. Immediate from Theorem 1 (take the lower-right elements of Σ̂ in the boundary
solution case).

Considering the more revealing here case of boundary solution, the role of simplifica-
tion is manifested in dropping some of the random variables’ dimensions (or the random
variables themselves, if they are uncorrelated) from the agent’s approximation. Due to

27Lastly, note that in our case we benefit from the Normality of distribution g(·), among other as-
sumptions: then the resulting distribution h(·) turns out to be Normal as well, but is characterized by
lower variance. The result is not always as straight-forward: e.g., in the case of distribution g(·) having
a bounded support, a discretely distributed solution for h(·) arises in the related analysis of Matějka and
Sims (2010).
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the effects of entropy reduction culminating in its complete “folding”,28 such random vari-
ables’ dimensions are replaced with non-stochastic objects, that is by their—sufficiently
biased—means (cf. the sparsity logic of Gabaix, 2014a).

Intuitively, according to Corollary 1, in the case of two uncorrelated random vari-
ables [alternatively, two correlated random variables’ dimensions] x1 and x2, as the folded
random variable [dimension] x̂2 effectively becomes non-stochastic, a simple univariate
[one-dimensional] approximating model based on x̂1 emerges subjectively.

For example, consider a vineyard: a garden planted with grapevines, with wild rasp-
berries growing on the sidelines. These two plants’ “payoffs” depend on different subsets
of natural as well as market conditions, and are thus uncorrelated. Moreover, market
prices on wild raspberries are not subject to quality-related fluctuations or large demand
swings, hence they are not too volatile. As a result, a binding capacity constraint may
lead to total disregard of the presence of these relatively less prominent fruits.

Taking a slightly more involved case of correlated random variables, five different
grapes may be perfectly characterized by such attributes as their acidity, body, flavor
(e.g., spice), sugar and tannin levels. Here, a binding capacity constraint may result in
focusing on the most crucial attributes (say, acidity, body and sugar levels) and ignoring
the rest (flavor and tannin levels). (Corollary 3 develops this theme a little further.)

The results of Theorem 1 in economically interesting terms such as returns (i.e., af-
ter the inversion of the decorrelating transformation), are presented in the subsequent
Theorem 2.

Theorem 2 (Specific Solution to Informational Problem: Representation in Economic
Terms). The specific solution to the informational problem given in the statement of
Theorem 1 can be equivalently represented in terms of returns. In particular, the following
decomposition is valid:

rt+1 = r̂t+1 − µ̌r(Ûωt) + ϵr,t+1, ∀rt+1 ∈ RK ,

also producing

Σr = Σ̂r +Ψr, ∀Σr that is K ×K positive semi-definite,

where

r̂t+1 ∼ N (µ̂r(Ûωt), Σ̂r),

ϵr,t+1 ∼ N (0,Ψr),

with µ̂r(Ûωt) and µ̌r(Ûωt) given by Proposition 1, as well as with Σ̂r and Ψr defined as

Σ̂r := ΞΣ̂Ξ−1, Ψr := ΞΨΞ−1

basing on the results of Theorem 1.
28Terms “dispersion folding”, “randomness collapse” or “distribution contraction” all seem fitting for

this phenomenon.
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Proof. See Appendix §D.4.

Moreover, we can replace µ̌r(Ûωt) and µ̂r(Ûωt) with, respectively, µ̌r and µ̂r in the
statement of Theorem 2 (as well as in Theorem 1) by appealing to the arguments from
Appendix §B.2.29,30

The main economic results of Theorem 2 boil down to the following.

Corollary 2 (Specific Solution to Informational Problem: Overconfidence). The specific
solution to the informational problem represented in economic terms, as given in the
statement of Theorem 2, is characterized by “overconfidence”. I.e., the subjective variance-
covariance matrix is dominated by its objective counterpart:Ä

Σr − Σ̂r

ä
is K ×K positive semi-definite.

Proof. Immediate from Theorem 2 (take the variance decomposition equation).

Thus, Σ̂r, the variance-covariance matrix of the simplified log-returns r̂t+1, is smaller
than Σr, its counterpart for the original log-returns rt+1. This is a direct consequence
of the entropy-reducing simplification prompted by the information-processing capacity
constraint: recall that the entropy of a Gaussian random vector is a one-to-one map with
the determinant of its variance-covariance matrix. (Moreover, as compensation for the
simplification above, µ̂r, the mean of r̂t+1, is biased toward pessimism in comparison to
µr, its counterpart for rt+1; this follows right from Proposition 1.)

The claim that Σ̂r is smaller than Σr has somewhat surprising economic ramifications.

Corollary 3 (Specific Solution to Informational Problem: Correlation Inflation). The
specific solution to the informational problem represented in economic terms, as given in
the statement of Theorem 2, is characterized by:

(a) The inflated correlations between the elements of r̂t+1 relative to those for the elements
of rt+1 in the interior solution case. I.e., the generic correlation coefficient’s subjective
version moves away from its objective value towards 1 [or −1]:

|ρ̂r,kl| ≥ |ρr,kl|, ∀k, l ∈ {1, . . . , K};
29To sum up, Proposition 1 demonstrates the appropriateness of our approximation procedure and

allows to derive the normality of r̂t+1 with the subsequent decomposition equations of Theorems 1–2,
thus providing us with analytical convenience; while Appendix §B.2 ensures that approximation accuracy
result from Proposition 1 has not been lost in the process.

30There are also a couple of minor technical details of note. To aid subsequent analysis, it may be
worthwhile highlighting that in the interior solution case the variance-covariance matrix of approximation
errors for returns is again diagonal and remains unchanged: Ψr = Ψ. Another revealing result in the
interior solution case is that the optimal mean bias term defined in Theorem 1.1, µ̌r, takes the form
conformable with the bias term from Theorem 1.3, µ̌r(Ûωt): µ̌r = 1

2diag
−1(Σr − Σ̂r)⊙ (1−ωt), where ⊙

denotes the Hadamard product.
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which can be seen directly in the relationship

ρ̂r,kl = ρr,kl ×
Ä∑K

m=1 ξ
2
kmσ

2
m

ä1/2 Ä∑K
m=1 ξ

2
lmσ

2
m

ä1/2Ä∑K
m=1 ξ

2
kmσ

2
m − ψ2

1

ä1/2 Ä∑K
m=1 ξ

2
lmσ

2
m − ψ2

1

ä1/2 , ∀k, l ∈ {1, . . . , K},

where

ψ2
1 :=

Ä
e−2κ|Σ|

ä 1
K < min

m∈{1,...,K}
σ2
m,

K∑
m=1

ξ2km = 1, ∀k ∈ {1, . . . , K}.

(b) Either inflated or shrinking correlations between the elements of r̂t+1 relative to those
for the elements of rt+1 in the boundary solution case. I.e., the generic correlation
coefficient’s subjective version may move away from its objective value either toward
0 or 1 [−1]:

|ρ̂r,kl| R |ρr,kl|, ∀k, l ∈ {1, . . . , K}.

Proof. See Appendix §D.6.

The “correlation inflation” outcome is essentially robust, in spite of its reversal in
some special instances of the boundary solution case. The reason is that globally, both
the shrinking diagonal variance terms and the inflating off-diagonal covariance terms
contribute toward variance-covariance matrix Σ̂r being smaller than Σr. Since the effect
of shrinking covariances works in the opposite direction, the reversal may happen only
locally.31

Intuitively, Corollary 3 shows how the inflation of the correlations between the el-
ements of r̂t+1 as compared to the correlations between the elements of rt+1 emerges
subjectively. Effectively, this leads to further attraction of the positively correlated ele-
ments and the repulsion of the negatively correlated ones, which ultimately results in the
pooling of the random vector’s components into relatively detached “categories”.32

Returning to our vineyard example, think of Cabernet Sauvignon, Pinot Noir and
Shiraz grapevines being pulled together into one category, Pinot Grigio and Sauvignon
Blanc grapevines into another category, with the two categories of plants being pushed
apart as very distinct kinds of capital goods (say, “red” vs. “white”) that are characterized
by different combinations of attributes such as acidity or tannin levels.

Lastly, we note the following result.
31By the way, notice in the Corollary 1 and, especially, Corollary 2 the interplay between reduced

variances and biased correlations, which stems from the trade-off stipulated by the information-processing
capacity constraint (3).

32In computational cognitive science, as neural nework models undergo supervised learning to perform
categorization tasks, they demonstrate an emergent property of categorical perception: the latter is char-
acterized by within-category compression and between-category separation, similarly to the “correlation
inflation” effect above. For details, see Tijsseling and Harnad (1997), Damper and Harnad (2000).
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Corollary 4 (Satisficing). A binding information-processing capacity bound κ, such that
κ < κ♯, implies a positive expected value-function shortfall:

Ef
t [v

♯({q0,t, qt},Dt+1)− v({q0,t, qt}, D̂t+1)] > 0

for all {q0,t, qt} ∈ RK+1; which is operationally (to investor) and observationally (to econo-
metrician) equivalent, in terms of decision outcomes, to “satisficing”. The constrained,
i.e. a second-best, value function v(·) serves the role of the (endogenous) “aspiration
level”.

Proof. Take λ > 0 in Theorems 1 and 2, recognizing their premises from Lemma 1 and
Proposition 1.

This is a straight-forward instance of the concept of “satisficing”—as opposed to
“maximizing”—introduced by Simon (1997). Here, it literally corresponds to optimal-
ity in a constrained sense that generally does not achieve the first-best level.33

4 Discussion

4.1 Theoretical results
The information-processing capacity κ that is low enough to make the information con-
straint (3) binding induces a subjective probability measure h(·) that is different from the
objective measure g(·). Using the former in place of the latter for making decisions under
risk is less computationally burdensome, but at the same time biases the decision-making
environment in a certain, predictable direction. Although this discrepancy may give rise
to decision outcomes deviating from the unconstrained, rational-expectations alternative,
constrained optimality offered by the solution to the feasible problem PQI is still within
reach as long as optimal adjustments are made. Figure 5 illustrates the differences be-
tween the objective landscape of the stochastic environment (left panel) and the subjective
perspective on this stochastic landscape (right panel) for a case with two risky assets.

4.1.1 Overconfidence

One result can be viewed as the effective “overconfidence”. Because of the constraint
on utilized information processing capacity, the subjective probability measure h(·) is
characterized by lower entropy than the objective probability measure g(·), i.e., the former

33Also note how decision optimality depends on recognition of information-processing constraints, and
thus may look differently from the perspective of investors, who are inside actors in the model economy,
and econometricians, who tend to be outside observers of the economic activities. For the importance of
such differentiation, see, e.g., Hansen (2014).
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Figure 5: Objective and subjective probability densities, two risky assets
(parameterizations used are Rt+1 ∼ logN (µr,Σr), rt+1 ∼ N (µr,Σr),
µr = [0.10; 0.20], Σr = [0.10, 0.08; 0.08, 0.16], Eg

t [Rt+1] = [1.16; 1.32] (left panel);
and, for κ = 1 nat ≈ 1.44 bits with ωt = [0.5; 0.5],
R̂t+1 ∼ logN (µ̂r, Σ̂r), r̂t+1 ∼ N (µ̂r, Σ̂r),
µ̂r = [0.11; 0.21], Σ̂r = [0.06, 0.08; 0.08, 0.12], Eh

t [R̂t+1] = [1.15; 1.31] (right panel)).
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is a coarser version of the latter. In our case with log-normal payoffs, the entropy reduction
is achieved solely by reducing the variance of the relevant random variables.

Specifically, Σ̂r, the variance-covariance matrix of r̂t+1, is smaller than Σr, its coun-
terpart for rt+1, as stated in Corollary 2. This is reflected in Figure 5 by the relatively
more peaked probability densities in the right panel.

4.1.2 Pessimism

As a by product of the previous result, we obtain what can be viewed as necessary
“pessimism”. In order to compensate for the entropy-reducing simplification discussed
above, the means of approximating random variables have to be adjusted. Effectively, the
required adjustment amounts to adopting a subjectively pessimistic view at the future
state of the world.

The exact bias term µ̌r, as given by Proposition 1, is stronger for a larger share
of wealth invested in risky assets ωt and a larger discrepency between objective and
subjective variances (Σr− Σ̂r). For a positive size of risky investments, the bias shifts the
subjectively expected value Eh

t [R̂t+1] downward. (Otherwise, a risk-averse agent would be
relatively over-invested in risky assets.34) Figure 5 demonstrates the optimal result with
the expected value of the top right panel’s probability distribution moved slightly to the
west, so that Eh

t [R̂t+1] < Eg
t [Rt+1].35

4.1.3 Categorization

Our key result, concerning only the multivariate settngs, is emerging “categorization”.
Conceptually, it is worthwhile to distinguish two kinds of categorization:

(i) bundling of random variables’ support set partitions, i.e. bundling of states (e.g.,
coarsening of the state space through merging of several states into one);36

(ii) pooling of the random variables themselves, i.e. pooling of types (e.g., conditionally
on the value of one random variable the other converges toward a non-stochastic
Dirac delta function).

Technically, entropy reduction for uncorrelated random variables leads, at its extreme,
to “dispersion folding”: that is, folding and dropping out low-volatility categories (think of

34Note that this result is not necessarily at odds with our initial motivating experiment due to Gabaix
and Laibson (2000), which implies overconfidence without pessimism. If the differences of simplified
variances from true variances are about the same for different root nodes in the choice set, the mean bias
term is roughly equalized between available choices, and thus can be ignored in their setting.

35Although for the parameterization used here, the bottom right panel’s distribution is actually shifted
slightly to the east.

36In principle, merging of support set partitions also happens in the process of quantization of a
continuous random variable, but we focus on different issues at this point.
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it as “categorization in” vs. “categorization out”). This formally corresponds to bundling
of states, and is dealt with by Corrollary 1.

However, for correlated random variables the above pertains to random variables’ di-
mensions, and leads to “correlation inflation”: that is, clustering into similar categories
(think of it as “categorization together” vs. “categorization apart”). This formally corre-
sponds to pooling of types, and is taken care of by Corrollary 3

While originally belonging to the domain of cognitive psychology and neuroscience,
these ideas were introduced to economics a long time ago. For instance, Herbert Simon
(1947, quoted from 1997 edition) noted:

“The human being striving for rationality and restricted within the limits of
his knowledge has developed some working procedures that partially overcome
these difficulties. These procedures consist in assuming that he can isolate
from the rest of the world a closed system containing a limited number of
variables and a limited range of consequences.”

Indeed, in our framework the “limited number of variables” idea roughly corresponds to
the “folding” effect, while the “limited range of consequences” to “correlation inflation”
(and to variance reduction, or “overconfidence”, more generally).

In this paper we examine only one of the two categorization mechanisms: while ignor-
ing categorization as folding and dropping out the less important random variables, here
we focus on categorization as the inflation of correlations between random variables.37

In our case, the positively correlated elements of rt+1 become even more correlated in
r̂t+1, thus similarly behaved co-moving assets exhibit a sort of attraction. While negatively
correlated elements become even more so, leading to the repulsion of the counter-moving
assets. These dynamics give rise to subjective clustering of different assets into relatively
distinct categories, “asset classes”. The mechanics behind it is especially transparent in
the leading case of interior solution: the covariance terms in Σ̂r, the variance-covariance
matrix of simplified returns r̂t+1, are unchanged, but the variance terms are reduced,
consequently leading to the correlation coefficients exceeding in absolute magnitude those
in Σr, the variance-covariance matrix of original returns rt+1. It can be seen in Figure
5 that the random variables described by the probability densities of the right panel are
more aligned along the west-east axis and hence exhibit a higher pairwise correlation
(ρ̂r,12 = 0.90 > 0.63 = ρr,12).38

37We discuss the economic role of the other mechanism in more detail elsewhere, as a part of a separate
line of investigation.

38A useful way to look at this categorization result is through the lens of principal component analysis.
Theorems 1 and 2 reveal the effective amplification of the relative magnitude of the largest eigenvalues
of the subjective variance-covariance matrix that in turn leads to the amplification of the relative share
of the subjective random variables’ variance captured by their first principal components. As long as
any two variables share the same leading principal components—in other words, the absolute magnitude
of their pairwise correlation coefficient is high—then an increase in these leading principal components’
importance also increases (in absolute terms) the correlation between the two variables.
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In a real-world practice, assets in the same category (i.e., positively correlated ones)
would tend to be treated as more similar than they actually are, while assets in different
categories (negatively correlated) would seem more different that they really are.

4.1.4 Decision outcomes

Nevertheless, when agents do follow the above approximation procedures, the decision
outcomes (such as prices P ∗

0,t and P ∗
t ) achieve constrained optimality by construction,

as reflected in Corollary 4. That is, they are in the “neighborhood” of fully optimal
unconstrained rational-expectations outcomes, with the “radius” of the neighborhood
inversely related to the magnitude of information-processing capacity κ.

Technically, decision errors appear due to the approximation to the wealth process,
which leads to a positive expected distortion Ef

t [d(rt+1, r̂t+1)] = Ψr ≥ 0. The approxima-
tion is very accurate in practice though (see the comments on Proposition 1.1 in §D.2).
Also note that decision errors are symmetric around the fully optimal levels (see Theo-
rem 2), hence they at least partically cancel out on aggregate. Moreover, the errors are
relatively smaller for contingencies that impact welfare the most (see §H).

At the same time, non-negligible radius of the neighborhood of deviations from full
optimality leaves room for positive trading volumes even between agents having access
to exactly same information and identical in all other respects except different levels of κ
(with a caveat that agent multiplicity is not modeled explicitly here).39

4.2 Practice
Our main result regarding the subjective ampification of the correlations between different
risky assets and their consequent categorization has a number of practical implications.

In the case of positively correlated assets, endogenously emerges their subjective clus-
tering into asset classes. For example, stocks in the Australian mining company BHP
Billiton and Chicago Mercantile Exchange futures contracts on crude WTI oil may have
a true correlation of returns well below 1, and yet be subjectively viewed by investors as
correlated more tightly than that and treated as a single asset class “commodities”. While
shares of U.S. companies with very different business fundamentals may be mechanically
merged into an asset class “small value” or “technology” stocks. Such effects entail the
(self-reinforcing) popularity of operating in terms of aggregated asset classes instead of
disaggregated assets among the investors (as well as among econometricians). This fuels
the interest in “asset allocation”, “asset comovement” and “style investing”.40

39We again abstract away from the fact that in our particular exchange economy, consumption and
investment outcomes coincide in constrained and unconstrained cases, and (as long as competitive equi-
librium is unique/markets are complete) so do prices, hence there is actually no room for decision errors
as well as for trade.

40See Sharpe (1992), Brinson et al. (1986 and 1991), Doeswijk et al. (2014), Fama and French (1993),
Barberis and Shleifer (2003), Barberis et al.( 2005).
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A straight-forward theoretical prediction of our analysis is that agents with lower
information-processing capacity will be relatively more predisposed to such simplifying
categorizations and clustering. The style investing phenomenon is well studied in the
literature and provides enough evidence to verify the above prediction. First of all, signs
of style investing are indeed present in the data: investor trading demands exhibit notable
correlations; correlations within the same category of assets are stronger than between
different categories; and measured correlations exceed the levels warranted by the assets’
undelying fundamental characteristics (e.g., see Pindyck and Rotemberg, 1990; Chan et
al., 2000; Teo and Woo, 2004; Froot and Teo, 2008; Choi and Sias, 2009). Secondly,
the variation in the stregth of correlations is consistent with the presumed differences in
capacity: the clustering is stronger among less sophisticated retail investors than it is
among institutional investors, who tend to be professional market participants that are
supposed to be relatively less capacity-constrained; Kumar and Lee (2006) already found
some evidence of this, while an explicit comparison of Jame and Tong (2014) reports the
values for one popular measure of correlations in investment decisions (“herding”) in two
market constituencies we are concerned about at 4.01% and 2.09%, respectively. This is
consistent with our theoretical prediction.

In the case of negatively correlated assets, from a subjective point of view they may
seem like effective hedging instruments. For instance, portfolios of government bonds
and portfolios of stocks may have a slightly negative true correlation of returns in some
economic regimes/time periods, usually involving so-called “flight-to-quality” episodes
(Li, 2002; Connolly et al., 2005; Guidolin and Timmermann, 2007; Andersson et al., 2008;
Yang et al., 2009), but subjective amplification of such correlations could be responsible
for an often-held view of bonds serving the role of a hedge for stocks (for examples, see
Canner et al., 1997). Different hedging motives are the main focus of the “strategic asset
allocation” literature.41

Lastly, correlation inflation may have real consequences for investors that maximize
portfolio return subject to a constraint on the accepted level of portoflio variance (i.e.,
“mean-variance investors”), in case they rely on the simplified variance Σ̂r but still use
the matched expected return Eh[R̂t+1] = Eg[Rt+1]. In general, such investors will un-
derappreciate the benefits of diversification. In a simple example, expanding a portfolio
from one asset with variance σ̂r to a portfolio split equally between two assets with equal
variances σ̂r,1 = σ̂r,2 := σ̂r and correlation coefficient ρ̂r,12 reduces the portfolio variance
by 0.5σ̂r(1 − ρ̂r,12). Here, the magnitude of variance reduction decreases as σ̂r falls and
ρ̂r,12 rises further, a typical situation since the simplified variance Σ̂r is necessarily lower
than its original counterpart Σr.

41E.g., see Brennan et al. (1997), Campbell and Viceira (2002b), also refer to Wachter (2010) for
a more recent review paper; additionally, a modern practitioners’ view can be found in Asl and Etula
(2012).
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5 Conclusion
The goal of the current paper is to improve our understanding of how in a stochastic
environment economic decisions are made by real people, whose information-processing
abilities may be limited, as opposed to fictitious entities endowed with unbounded com-
putational resources. The paper develops a positive, descriptive theoretical framework
of decision-making under risk. It presumes rational optimizing behavior of the agents,
follows the discipline of information theory, is consistent with theoretical and empirical
findings in neuroscience as well as with the results of economic laboratory experiments.
The ensuing structural mechanism allows to supplement a classical general equilibrium
Lucas tree model with costly information processing.

As a result, the constrained-optimal behavior of our agent exhibits categorization.
The latter occurs due to simplification and pruning of the perceived environment (what
we called dispersion folding), which in turn lead to subjective clustering of covarying
random variables together (correlation inflation). Empirically, categorization induced
by information-processing constraints seems to be responsible for the financial markets
regularity known as style investing.

The present paper develops an approach to evaluating expectations of stochastic
objects that explicitly accounts for constraints imposed by the bounded information-
processing capacity. Our information-theoretic approach carries through without any
loss of generality, as traditional rational expectations are nested within and emerge as
a special case when the information constraint is not binding. This generality allows to
examine the information-processing capacity demands of the rational expectation forma-
tion. From an operational standpoint, as a process of computing an integral with respect
to some probability measure, the demands it poses are not prohibitive, because various
adjustments can reduce the computational costs dramatically without substantial effi-
ciency losses. However, from a more conceptual standpoint, as an equilibrium notion, its
demands may be too restrictive in practice (for instance, forcing the true objective and
the approximate subjective distributions to coincide is a strong restriction that is rarely
innocuous).42

42Lastly, note that our treatment is more general than it may seem at first: it also accounts for
information processing performed with the aid of machines, which is relevant for any practical parallels
going beyond toy examples. Appendix §K fleshes out this point in more detail.
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