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Abstract
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A Extension to infinite horizon: Sequence problems

A.1 Investment portfolio choice problem
The consumer-investor is interested in solving the following consumption and portfolio
choice problem, PQ:

max
{Cs,{q0,s,qs}}∞t

Egt

[ ∞∑
s=t

βs−tu(Cs)

]
=
∫
RK
+

∞∑
s=t

βs−tu(Cs) gD(Ds|Ds−1) dDs {PQ}

subject to a sequence of budget constraints

Cs + P0,sq0,s + P ᵀ
sqs = q0,s−1 + (P s +Ds)

ᵀqs−1, ∀s ≥ t,

control variables’ domain restrictions Cs, {q0,s, qs} ∈ R+ × RK+1,∀s ≥ t, as well as the
no-Ponzi-schemes constraint, also listing here the usual transversality condition for opti-
mality,

lim
T→∞

{(
T∏
s=t

P0,s

)
q0,T−1 + 1ᵀ

(
T∏
s=t

diag(P s +Ds)
−1diag(P s)

)
qT−1

}
≥ 0 a.s. (under gD),

lim
s→∞

Egt [β
s−tu′(Cs)(P0,sq0,s + P ᵀ

sqs)] = 0;

with u(Cs) = C1−γ
s /(1− γ), and where

gD(Ds+1|Ds) is given, ∀s ≥ t.

(Alternatively, the no-Ponzi-schemes constraint and the transversality condition can be re-
placed with a compact domain for admissible control variables that covers the borrowing/short-
selling and the asset supply limits.)

In words, the representative agent would like to choose stochastic consumption and
investment plans that maximize an expected discounted sum of per-period utilities and
at the same time satisfy the sequence of budget constraints (as well as the technical
conditions ruling out pathological and ensuring valid solutions). The expectation is taken
with respect to a given objective probability density function that defines the distribution
of the stochastic fruit-dividends.

This is a standard dynamic programming problem. The state variables are {q0,t−1, qt−1}
and Dt. Denote the maximum value function as v♯({q0,t−1, qt−1},Dt). The corresponding
Bellman equation is then:

v♯({q0,t−1, qt−1},Dt) = max
Ct,{q0,t,qt}

¶
u(Ct) + βEgt

î
v♯({q0,t, qt},Dt+1)

ó©
subject to

Ct + P0,tq0,t + P ᵀ
tqt = q0,t−1 + (P t +Dt)

ᵀqt−1,

domain restriction Ct, {q0,t, qt} ∈ R+ × RK+1, as well as the same no-Ponzi-schemes
condition; also with the same utlity function specification, and where

gD(Dt+1|Dt) is given.
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A.2 Feasible investment portfolio choice problem
A feasible version of the consumption and portfolio choice problem, PQI , is formulated
as follows:

max
{Cs,{q0,s,qs}}∞t

Eht

[ ∞∑
s=t

βs−tu(Cs)

]
=
∫
RK
+

∞∑
s=t

βs−tu(Cs)hD(D̂s|D̂s−1) dD̂s {PQI}

subject to a sequence of budget constraints

Cs + P0,sq0,s + P ᵀ
sqs = q0,s−1 + (P s + D̂s)

ᵀqs−1, ∀s ≥ t,

control variables’ domain restrictions Cs, {q0,s, qs} ∈ R+ × RK+1,∀s ≥ t, as well as the
no-Ponzi-schemes constraint, also listing here the usual transversality condition for opti-
mality,

lim
T→∞

{(
T∏
s=t

P0,s

)
q0,T−1 + 1ᵀ

(
T∏
s=t

diag(P s + D̂s)
−1diag(P s)

)
qT−1

}
≥ 0 a.s. (under hD),

lim
s→∞

Eht [β
s−tu′(Cs)(P0,sq0,s + P ᵀ

sqs)] = 0;

with u(Cs) = C1−γ
s /(1− γ), and where

hD(D̂s+1|D̂s) solves PI given d(Ds, D̂s) and κ, ∀s ≥ t,

gD(Ds+1|Ds) is given, ∀s ≥ t.

The crucial difference from before is that in the feasible formulation of the consumption
and portfolio choice problem the expectation is now taken with respect to the endogenous
subjective probability density function for stochastic fruit-dividends, which itself has to
be obtained as an optimal solution to the auxiliary informational problem.

The corresponding Bellman equation becomes:

v({q0,t−1, qt−1}, D̂t) = max
Ct,{q0,t,qt}

¶
u(Ct) + βEht

î
v({q0,t, qt}, D̂t+1)

ó©
subject to

Ct + P0,tq0,t + P ᵀ
tqt = q0,t−1 + (P t + D̂t)

ᵀqt−1,

domain restriction Ct, {q0,t, qt} ∈ R+ × RK+1, as well as the same no-Ponzi-schemes
condition; also with the same utility function specification, and where

hD(D̂t+1|D̂t) :=
∫
supp(gD)

f(Dt+1, D̂t+1|Dt, D̂t) dDt+1,

fD(Dt+1, D̂t+1|Dt, D̂t) := arg

®
min
f(·,·)

Ef
î
d(v♯({q0,t, qt},Dt+1), v({q0,t, qt}, D̂t+1))

ó
s.t. I(gD(Dt+1|Dt);hD(D̂t+1|D̂t)) ≤ κ

´
,

gD(Dt+1|Dt) is given.
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The Bellman equation’s formulation is standard except that the probability density
function hD(·) with respect to which it is defined stems from the solution to auxiliary
sub-problem PI .1

B Solution: Technical details
This Apendix presents the solution to feasible consumption and portfolio choice problem
PQI . We start with the consumption and investment segment of the larger problem,
dealing with the informational sub-problem afterwards. Clearly segregated formulations
of these two sub-problems allow to formally solve each of them pretty much independently.

B.1 Solution to consumption and investment sub-problem
Here we solve problem PQI taking hD(D̂t+1) as given, i.e. focusing only on expressions
(PQI-1)–(PQI-2) while respecting the domain, no-Ponzi-schemes and utility function re-
strictions. Essentially, this is a portfolio choice problem of Samuelson (1969), as well as
Merton (1969), with price behavior related to underlying dividend dynamics as in Lucas
(1978), and Breeden (1979).

First-order necessary conditions for the interior optimum is of the usual form:

P0,t = Eht

ñ
β
u′(Ct+1)

u′(Ct)

ô
= Eht

[
β

Ç
Ct+1

Ct

å−γ]
, (B.1)

P t = Eht

ñ
β
u′(Ct+1)

u′(Ct)

Ä
P t+1 + D̂t+1

äô
= Eht

[
β

Ç
Ct+1

Ct

å−γ Ä
P t+1 + D̂t+1

ä]
. (B.2)

We do not provide the full argument, and only mention the importance of realizing
that due to i.i.d.-assumption, Eht

[
β
ÄÛqᵀD̂t+1

ä−γ Ä
P (D̂t+1) + D̂t+1

ä]
ends up being just a

vector of constants. Leaving verification to the reader, we simply state that the optimal
solution to consumption and investment sub-parts of the full problem is characterized by
the expressions below (unfortunately, completely closed-form analytical solutions are not
available in general even for the unconstrained problem PQ):

C∗
t = (1− β)Wt = (qt−1)

ᵀDt, (B.3)
P ∗
0,tq

∗
0,t + (P ∗

t )
ᵀq∗

t = βWt, (B.4)
{q∗0,t, q∗

t} = {0, Ûq}, (B.5)

P ∗
0,t = P0(Dt) = β(ÛqᵀDt)

γ Eht

[
1

(ÛqᵀD̂t+1)γ

]
, (B.6)

P ∗
t = P (Dt) =

β

1− β
(ÛqᵀDt)

γ Eht

[
1

(ÛqᵀD̂t+1)γ
D̂t+1

]
, (B.7)

v∗t = v({q0,t−1, qt−1},Dt) = AW 1−γ
t , (B.8)

1Note that the no-Ponzi-schemes constraint here holds also for the original probability distribution
gD(·) as long as original and simplified distributions are absolutely continuous with respect to each other.
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where, according to the definition in (4),

Wt = q0,t−1 + (P ∗
t +Dt)

ᵀqt−1,

and, in line with (7),

A =
(1− β)−γ

1− γ
.

In the optimum, consumption and total investments are each constant shares of current
wealth; and the value function takes the same CRRA form as the utility function, only
in terms of wealth.

B.2 Updating of the mean
Notice that

µ̂r(Ûωt) = µr + µ̌r(Ûωt) = µr +
1

2
diag−1(Σr − Σ̂r)1(1− Ûωt) ̸=

̸= µr +
1

2
diag−1(Σr − Σ̂r)−

1

2
(Σr − Σ̂r)ωt = µr + µ̌r =

= µ̂r

in general. (For ωt with positive elements, in the interior solution case it is easy to see that
µ̂r(Ûωt) < µ̂r; but this does not always hold in the boundary solution case, as can be shown
by a simple counterexample.) However, Proposition 1.1 states that optimal accounting
for the discrepancy between original, Σr, and simplified, Σ̂r, variance-covariance matrices
requires using the latter value for the mean, µ̂r.

Less formally, we may posit that the mean µ̂r(Ûωt) is trained over time off achieved
decision outcomes, thus approaching µ̂r in the course of “supervised learning”.

Alternatively and more formally, we may postulate the following procedure for iterative
updating of the mean. In each iteration ι of the optimization process, proposed choice
of parameter value θι := {q0,t,ι, qt,ι} that has been accepted is immediately reflected in
the corresponding value of ωt,ι (which is possible since the latter is then just a function
of known values of {P0,t,P t}, Wt as well as {q0,t,ι, qt,ι}; and with such auxiliary routine
embedded into function φ(x|θι)). In turn, this update allows to compute the values of
µ̌r,ι and µ̂r,ι. Remember that conditional on the value of µ̌r,ι, distortion function from
Proposition 1.3 is otherwise invariant, hence the rest of the solution to informational
problem is unaffected, and results of Theorems 1–2 still hold except for updated values
of µ̌r,ι and µ̂r,ι. Since our environment is sufficiently “well-behaved”, both θι and µ̂r,ι

will converge to their optimal values θ∗ and µ̂r simultaneously. As a result, we have the
following Proposition.

Proposition B.1 (Specific Solution to Informational Problem: Representation in Eco-
nomic Terms with Updating of the Mean). Assume the procedure for iterative updating
of the mean described in the text above. Then statement of Theorem 2 holds for µ̌r(Ûωt)
and µ̂r(Ûωt) replaced with, respectively, µ̌r and µ̂r throughout.
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Proof. See Appendix §D.5.

Note that the result of Proposition B.1 is achieved for any admissible starting value
of Ûωt ∈ R+. It is also noteworthy that postulated iterative updating procedure is akin to
the (iterative or continuous) updating requirement discussed in Appendix §J, which we
have ruled out appealing to robustness in Proposition 1.2 instead; but at this point the
problem is much simpler and requirements needed for implementing the procedure seem
more realistic.

B.3 Solution to informational sub-problem
Now we turn to the informational part of the larger problem PQI . It is basically solved in
the main text and crucial details of the solution are presented in §3.3 (with §B.2 furnishing
some auxiliary results). The rest is available here.

Turning to informational coherence, optimal solution to the informational sub-problem
amounts to the following joint probability density:

f(x, x̂) = f(x|x̂)h(x̂) =

= (2π)−
K
2 |Ψ|−

1
2 e−

1
2
(x−x̂+µ̌)ᵀΨ−1(x−x̂+µ̌) × (2π)−

K
2

∣∣∣Σ̂∣∣∣− 1
2 e−

1
2
(x̂−µ̂)ᵀΣ̂−1(x̂−µ̂) =

= (2π)−
2K
2

∣∣∣∣∣∣
Σ Σ̂

Σ̂ Σ̂

∣∣∣∣∣∣
− 1

2

exp

Ö
−1

2

x− µ

x̂− µ̂

ᵀ Σ Σ̂

Σ̂ Σ̂

−1 x− µ

x̂− µ̂


è
,

which, after substituting Ξᵀrt+1 for x, Ξᵀr̂t+1 for x̂, Ξᵀµr for µ, Ξᵀµ̂r for µ̂, ΞᵀΣrΞ for
Σ, and ΞᵀΣ̂rΞ for Σ̂, produces fr(rt+1, r̂t+1):

f(x, x̂) = (2π)−
2K
2

∣∣∣∣∣∣
Σr Σ̂r

Σ̂r Σ̂r

∣∣∣∣∣∣
− 1

2

exp

Ö
−1

2

rt+1 − µr

r̂t+1 − µ̂r

ᵀ Σr Σ̂r

Σ̂r Σ̂r

−1 rt+1 − µr

r̂t+1 − µ̂r


è

=

=: fr(rt+1, r̂t+1).

That is, f(·, ·) and fr(·, ·) have the same multivariate-N form, i.e. for parameters
consisting of mean vector Θ1 and variance-covariance matrix Θ2,

f(χ, χ̂|Θ1,Θ2) = fr(χ, χ̂|Θ1,Θ2) is N (Θ1,Θ2) ∀χ, χ̂ ∈ RK .

Obviously, analogous relationship holds for g(·) and gr(·), as well as h(·) and hr(·).

B.4 Merging two sub-problems’ solutions
Finally, we use the results from §B.1 and §B.3 to tie up the loose ends concerning the
probability distributions of dividends.
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Having got the solution for P ∗
t in (B.7), we can combine definition (5) with the result

of Theorem 2 to “reverse-engineer” approximating probability density function for divi-
dends so that by construction it would be coherent with approximating density of returns
deduced in the Theorem:

hr(r̂t+1) = (2π)−
K
2 |Σ̂r|−

1
2 e−

1
2
(r̂(D̂t+1|D̂t)−µ̂r)

ᵀΣ̂−1
r (r̂(D̂t+1|D̂t)−µ̂r) =: hD(D̂t+1|D̂t),

where

r̂(D̂t+1|D̂t) = ln R̂(D̂t+1|D̂t) = ln
Ä
diag (P (Dt))

−1
Ä
P (D̂t+1) + D̂t+1

ää
:=

:= ln

(
diag

Ç
β

1− β
(ÛqᵀDt)

γ E

å−1 Ç β

1− β
(ÛqᵀD̂t+1)

γ E + D̂t+1

å)
.

Here, we have introduced for the following constant vector a shortcut notation

E := Eht

[
1

(ÛqᵀD̂t+1)γ
D̂t+1

]
.

Since in equilibirum prices are dictated by the solution to consumption and invest-
ment subproblem from §B.1, we use the same optimal price function (B.7), together with
definition (5) and assumption (8), also to back out the true density for dividends:

gr(rt+1) = (2π)−
K
2 |Σr|−

1
2 e−

1
2
(r(Dt+1|Dt)−µr)

ᵀΣ−1
r (r(Dt+1|Dt)−µr) =: gD(Dt+1|Dt),

where

r(Dt+1|Dt) = lnR(Dt+1|Dt) = ln
Ä
diag (P (Dt))

−1 (P (Dt+1) +Dt+1)
ä
:=

:= ln

(
diag

Ç
β

1− β
(ÛqᵀDt)

γ E

å−1 Ç β

1− β
(ÛqᵀDt+1)

γ E +Dt+1

å)
.

Note that constant vector E used here in the determination of true r(Dt+1|Dt) is the
same as in the case of approximating r̂(D̂t+1|D̂t), and is still defined in terms of simplified
probability density according to (B.4).

The corresponding result for fr(rt+1, r̂t+1) and fD(Dt+1, D̂t+1|Dt, D̂t) follows in a
similar manner, thus validating informational coherence.

C Related literature
Related themes in the literature only briefly mentioned in the main text include:

• information-theoretic methods: classical works (Shannon, 1948; Jaynes, 2003; Cover
and Thomas, 2006; MacKay, 2003; in economics Marschak, 1959, 1968, 1971), ratio-
nal inattention based on mutual information (Sims, 1998, 2003, 2006, 2010; Matějka
and Sims, 2010; Matějka and McKay, 2014; Matějka, 2014a, 2014b; Caplin and
Dean, forthcoming, 2013; Ravid, 2016; also refer to Woodford, 2012, 2014), model

6



diagnostics and belief measurement based on relative entropy (Stutzer, 1995, 1996;
Hansen and Sargent, 2007a, 2007b; Hansen, 2007; Backus et al., 2014; Ghosh et al.,
2013; Chen et al., 2015; Alvarez and Jermann, 2005; overview available in Hansen,
2014);

• statistical learning and simplification: “coarsening” (Al-Najjar and Pai, 2014), reg-
ularization (Chen and Haykin, 2002; Bickel and Li, 2006), shrinkage (Stein, 1956;
James and Stein, 1961; Tibshirani, 1996; in finance Ledoit and Wolf, 2003, 2004a,
2004b; Jagannathan and Ma, 2003; Won et al., 2012; Jorion, 1985; 1986);

• bounded rationality focusing on decision costs and ensuing simplification: classical
works (Simon 1997, 1957; Gigerenzer and Selten, 2001; Gigerenzer et al., 2000;
Gilovich et al., 2002), modern works (Gabaix and Laibson, 2000, 2005; Gabaix et al.,
2006; Fuster et al., 2012; Bordalo et al., 2016; Gabaix, 2014a, 2014b; Mullainathan,
2002b; Jehiel, 2005; also see Carroll, 2003), with costs due to memory limitations
(Gilboa and Schmeidler, 1995; Wilson, 2014; Mullainathan, 2002a);

• bounded rationality focusing on decision criterion and ensuing belief distortions,
including “optimism”/“pessimism” and “overconfidence”/“doubt”: endogenous dis-
tortions (Hansen, 2007; Hansen and Sargent 2007a, 2007b; Brunnermeier and Parker,
2005; Brunnermeier et al., 2007; Brunnermeier et al., 2013); exogenous distortions
(Cecchetti et al., 2000; Abel, 2002; Scheinkman and Xiong, 2003; Peng and Xiong,
2006);

• experimental evidence: entropy reduction (Gabaix and Laibson, 2000; Goldstone
and Hendrickson, 2010; Fleming et al., 2013), overconfidence (Camerer, 1995);

• neuroscience and psychology: textbooks (Dayan and Abbott, 2001; Squire et al.,
2008), thematic volumes (Baddeley et al., 2000; Doya et al., 2007; Glimcher et al.,
2008), journal review issues (Schultz, 2008; Bayer, 2008; Bunge, 2005; Pammi and
Srinivasan, 2013), information-processing capacity (classical papers Miller, 1956;
Barlow, 1961), working memory capacity (Shiffrin and Nosofsky, 1994; Kleinberg
and Kaufman, 1971; Bor et al., 2003; Owen, 2004; Bor and Owen, 2006; Migliore
et al., 2008; with review given in Cowan, 2000), selected models (Eliasmith et al.,
2012; Rao, 2010; as well as Padoa-Schioppa and Rustichini, 2014, 2015);

• asset pricing and portfolio holding regularities: “asset classes” (“asset allocation” in
Brinson et al., 1986, 1991; Sharpe, 1992; Fama and French, 1993; Doeswijk et al.,
2014; with “strategic” undertone and stocks versus bonds in Brennan et al., 1997;
Campbell and Viceira, 2002b; Wachter, 2010; Shiller and Beltratti, 1992; Canner
et al., 1997; Campbell et al., 2003; Campbell and Ammer, 1993; Fleming et al.,
1998; Connolly et al., 2005; Andersson et al., 2008; Guidolin and Timmermann,
2007; Li, 2002, 2003; Yang et al., 2009; “comovement” in Shiller, 1989; Pindyck
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and Rotemberg, 1990; Kumar and Lee, 2006; Barber et al., 2009; Barberis et al.,
2005; Veldkamp, 2006; “style investing” in Barberis and Shleifer, 2003; Peng and
Xiong, 2006; Brown and Goetzmann, 1997; Froot and Teo, 2008; Kumar, 2009; Teo
and Woo, 2004; Chan et al., 2000; Wahal and Yavuz, 2013; Cooper et al., 2005;
Boyer, 2011; Froot and Teo, 2008; Choi and Sias, 2009; Jame and Tong, 2014),
“underdiversification puzzle” (Blume and Friend, 1975; Statman, 1987; Kelly, 1995;
French and Poterba, 1991; with analysis and explanations offered in Polkovnichenko,
2005; Goetzmann and Kumar, 2008; Anderson, 2013; Goetzmann et al., 2005; Li,
2003; Van Nieuwerburgh and Veldkamp, 2009, 2010);

• “free energy” and decision-making (Ortega and Braun, 2013; Friston, 2009, 2010;
Still et al., 2012).

D Proofs

D.1 Proof of Lemma 1
Proof. In information theory PI is known as the problem of finding the distortion rate
function (e.g., see Cover and Thomas 2006). This is a standard calculus of variations
problem that can be solved using the method of Lagrange multipliers.

Form the Lagrangian functional:

L :=
∫
supp(h)

∫
supp(g)

d(x, x̂) f(x, x̂) dx dx̂+

+ λ

ñ∫
supp(h)

∫
supp(g)

f(x, x̂) ln f(x, x̂) dx dx̂−

−
∫
supp(h)

Ç∫
supp(g)

f(x, x̂) dx

å
︸ ︷︷ ︸

h(x̂)

ln

Ç∫
supp(g)

f(x, x̂) dx

å
︸ ︷︷ ︸

h(x̂)

dx̂−

−
∫
supp(g)

g(x) ln g(x) dx− κ

ô
+

+ µ(x)

ñ∫
supp(h)

f(x, x̂) dx̂− g(x)

ô
+

+ ν(x, x̂) [−f(x, x̂)] .

The integrability condition ensures the optimum exists. Absolute continuity rules
out boundary solutions. The objective is convex in f(x̂|x) for fixed g(x), so the first
order condition with respect to f(x, x̂) is sufficient for interior minimum. Equalize the
corresponding functional derivative to 0 to obtain

0 =:
δL

δf(x, x̂)
= d(x, x̂) + λ

®
ln f(x, x̂) + 1− ln

Ç∫
supp(g)

f(x, x̂) dx

å
− 1

´
+

+ µ(x)− ν(x, x̂).
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Rearranging yields the following solution to minimization problem:

f(x|x̂) = e
1
λ
ν(x,x̂)− 1

λ
µ(x)− 1

λ
d(x,x̂).

D.2 Proof of Proposition 1, with additional comments
The statement and its proof is split into three auxiliary propositions.

Proposition 1.1 (Approximate Distortion Function). Let distortion function

d(rt+1, r̂t+1) = (lnWt+1 − ln Ŵt+1)
2

be a random scalar defined in the context of problem PQI.
Then, under distributional assumptions given, it approximately equals

d(rt+1, r̂t+1) ≈ (ωᵀ
t (rt+1 − r̂t+1 + µ̌r))

2 ,

where
ωt := diag(P t)qt / Wt

is a K-vector of the shares of wealth invested in risky assets; Σ̂r is a variance-covariance
matrix for r̂t+1; while the mean of simplified random variable µ̂r equals

µ̂r := µr + µ̌r,

with bias µ̌r defined as

µ̌r :=
1

2
diag−1(Σr − Σ̂r)−

1

2
(Σr − Σ̂r)ωt.

As interval between time periods t and (t+ 1) shrinks, in the limit the approximation
turns into exact expression.

Proof. See Appendix §D.2.1.

The approximation is based on continuous-time representation of the stochastic pro-
cesses involved (lnWt+1 and ωᵀ

trt+1), it is relatively innocuous. The general approach is
related to that of Campbell and Viceira (2002a). On the other hand, similar approxima-
tion result can also be obtained directly using second-order Taylor expansion.

Approximate distortion function from Proposition 1.1 is purpose-specific: it adjusts to
and depends on ωt, the shares of wealth considered for being invested in risky trees (note
that riskless tree’s share does not enter the expression, thus even the scales of three sum-
mands are not pinned down here). This introduces a sort of endogeneity, circularity to
the choice of what shares to use: a contemplated portfolio allocation generates respective

9



shares, thus inducing the distortion function and the corresponding aproximating distri-
bution, which in turn will lead to another candidate portfolio choice and updated set of
shares that differ from those used for the latest iteration of an approximating distribution.

To resolve this dilemma, we motivate the choice of wealth shares to use by the mini-
mization of maximum loss, robustness to “worst-case” scenarios (cf. Hansen and Sargent,
2007). This approach will allow us to get rid of the connection to actual portfolio alloca-
tions or net supplies altogether. Results of its application are condensed in the following
Proposition. (Appendix §J discusses alternative resolutions of this circularity dilemma.)

Proposition 1.2 (Robust Strategy). Let player Agent solve problem PI with disortion
function defined as in the statement of Proposition 1.1:

min
fr(r,r̂)

Ef [d(rt+1, r̂t+1)] ⇐⇒ min
fr(r,r̂)

Ef
î
(ωᵀ

t (rt+1 − r̂t+1 + µ̌r))
2
ó

subject to standard information constraint and technical restrictions (i.e., λ-, µ(x)- and
ν(x, x̂)-constraints). Let player Nature maximize the same objective function with respect
to ω1K,t, that is solve the following problem:

max
ωt

Ef [d(rt+1, r̂t+1)] ⇐⇒ max
ωt

Ef
î
(ωᵀ

t (rt+1 − r̂t+1 + µ̌r))
2
ó

subject to

ωᵀ
t1 ≤ ÛωNt ∀ÛωNt ∈ R+,

ωk,t ≥ 0 ∀k ∈ {1, . . . , K}.

Then a simultaneous-move game posesses a Nash-equilibrium characterized by the
following strategies (∀ÛωAt , ÛωNt ∈ R+): Agent plays

f ⋆r (rt+1, r̂t+1) := arg min
fr(r,r̂)

Ef
[∑
k

1

K

ÄÛωAt ä2 Ärk,t+1 − r̂k,t+1 + µ̌r,k(ÛωAt )ä2] ,
where

µ̌r,k(ÛωAt ) := 1

2
(σ2

r,k − σ̂2
r,k)(1− ÛωAt ) ∀k ∈ {1, . . . , K};

Nature plays a mixed strategy

ωk,t := ÛωNt , k = k⋆,

ωk,t := 0, k ̸= k⋆,

where
k⋆ ∼ U({1, . . . , K}).

A game where player Nature is a second-mover posesses a Nash-equilibrium charac-
terized by the same strategies.

10



Proof. See Appendix §D.2.2.

Fixed scalars ÛωAt and ÛωNt in the Proposition above serve the role of unknown constant
parameters denoting some chosen value of total share of wealth invested in risky assets in
Agent’s and Nature’s problems, respectively. For instance, ÛωAt may be thought as implicit
borrowing/collateral constraint.

Also note that constraint ωk,t ≥ 0 ∀k ∈ {1, . . . , K} in Nature’s problem ensures
consistency with general equilibrium.

Proposition 1.2 is of interest to us not in itself, but as a means of further refining of
the distoriton function to be used. Such a distortion function is formulated in Proposition
1.3.

Proposition 1.3 (Robust Approximate Distortion Function). Robust strategy given by
the statement of Proposition 1.2, and assuming total share of wealth invested in risky
assets agrees with the definition in Proposition 1.1, i.e.Ûωt := 1ᵀωt = 1ᵀdiag(P t)qt / Wt,

induces the following distortion function:

d(rt+1, r̂t+1) := (rt+1 − r̂t+1 + µ̌r(Ûωt))ᵀ(rt+1 − r̂t+1 + µ̌r(Ûωt)),
where

µ̌r(Ûωt) := 1

2
diag−1(Σr − Σ̂r)(1− Ûωt) =

=
1

2
diag(σ2

r,1 − σ̂2
r,1, · · · , σ2

r,K − σ̂2
r,K)1(1− Ûωt).

Proof. See Appendix §D.2.3.

D.2.1 Proof of Proposition 1.1

Proof. Consider continuous-time dynamics of dividend and price processes from problem
PQ (their counterparts from problem PQI are analogous to ones below):

dDt := diag(Dt)µDdt+ diag(Dt)σDdBt,

dP0,t := r0,tP0,tdt,

dP t := diag(P t)(µP +
1

2
diag−1(σPσ

ᵀ
P ))dt+ diag(P t)σPdBt,

where Dt is the dividend process, µD is a K-sized constant vector, σD is a K×K constant
matrix, Bt is a standard K-dimensional Brownian motion, P0,t is thought as the money
account process with stochastic instantaneous interest rate r0,t (which is equivalent to

11



rolling over just maturing zero coupon bonds), and P t is the price process corresponding
to assets with the dividend process given above.

By Itō’s lemma, for P t := P (Dt) we have:

µP = diag(P t)
−1 ∂P

∂Dᵀdiag(Dt)µD +
1

2
diag(P t)

−1σᵀ
Ddiag(Dt)

∂2P

∂D∂Dᵀdiag(Dt)σD − 1

2
diag−1(σPσ

ᵀ
P ),

σP = diag(P t)
−1 ∂P

∂Dᵀdiag(Dt)σD.

We also have, deducing the (ex-dividend) wealth dynamics from the budget constraint:

d lnP t = µPdt+ σPdBt,

dWt = Wt

Ç
ωᵀ
t (µP +

1

2
diag−1(σPσ

ᵀ
P ) + diag(P t)

−1Dt − r0,t1) + r0,t −
Ct
Wt

å
dt+

+Wtω
ᵀ
tσPdBt,

d lnWt =

Ç
ωᵀ
t (µP +

1

2
diag−1(σPσ

ᵀ
P ) + diag(P t)

−1Dt − r0,t1) + r0,t −
Ct
Wt

−

−1

2
ωᵀ
tσPσ

ᵀ
Pωt

å
dt+ ωᵀ

tσPdBt,

where

Wt := P0,tq0,t + P ᵀ
tqt,

ω0,t := P0,tq0,t / Wt,

ωt :=
1

Wt

diag(P t)qt.

Increasing time intervals to dt = 1 and setting

Σr := σPσ
ᵀ
P ,

rt+1 := µP + σP (Bt+1 −Bt) =: µr +N (0,Σr)

produces a continuous-time approximation to a discrete-time case:

lnWt+1 − lnWt ≈
Ç
ωᵀ
t (diag(P t)

−1Dt − r0,t1) + r0,t −
Ct
Wt

+

+
1

2
ωᵀ
tdiag

−1(Σr)−
1

2
ωᵀ
tΣrωt

å
+ ωᵀ

trt+1,

with its constrained counterpart being (will verify later in Theorem 2 that log-normality
of constrained random variables is admissible, and deduce the value of µ̂r shortly)

ln Ŵt+1 − lnWt ≈
Ç
ωᵀ
t (diag(P t)

−1Dt − r0,t1) + r0,t −
Ct
Wt

+

+
1

2
ωᵀ
tdiag

−1(Σ̂r)−
1

2
ωᵀ
t Σ̂rωt

å
+ ωᵀ

t r̂t+1.

12



Thus,

d(rt+1, r̂t+1) = (lnWt+1 − ln Ŵt+1)
2 ≈

≈
Ç
ωᵀ
t (rt+1 − r̂t+1) +

1

2
ωᵀ
tdiag

−1(Σr − Σ̂r)−
1

2
ωᵀ
t (Σr − Σ̂r)ωt

å2

.

Since wealth process follows a geometric Brownian motion, equalizing expected growth
rates of true lnWt+1 and approximate ln Ŵt+1 when volatility Σr is replaced with Σ̂r

necessitates an adjustment to the mean of approximating random variable, µ̂r. It is easy
to see that the correct mean has to be

µ̂r := µr +
1

2
diag−1(Σr − Σ̂r)−

1

2
(Σr − Σ̂r)ωt =: µr + µ̌r.

Which also is, by the usual mean-as-a-minimum-MSE-estimator logic, the minimizer of

Ef [d(rt+1, r̂t+1)] ≈ Ef
[Ç

ωᵀ
t (rt+1 − r̂t+1) +

1

2
ωᵀ
tdiag

−1(Σr − Σ̂r)−
1

2
ωᵀ
t (Σr − Σ̂r)ωt

å2
]
,

producing as a result

Ef [d(rt+1, r̂t+1)]

∣∣∣∣∣∣
µ̂r=µr+µ̌r

≈ ωᵀ
tΨrωt,

where we have introduced (in accordance with Theorem 2) notation

Ψr := Ef [(rt+1 − r̂t+1 + µ̌r)(rt+1 − r̂t+1 + µ̌r)
ᵀ].

Now approximate distortion function can also be formulated as

d(rt+1, r̂t+1) ≈
Ç
ωᵀ
t (rt+1 − r̂t+1) +

1

2
ωᵀ
tdiag

−1(Σr − Σ̂r)−
1

2
ωᵀ
t (Σr − Σ̂r)ωt

å2

=

= (ωᵀ
t (rt+1 − r̂t+1 + µ̌r))

2 .

Lastly, keeping time intervals infinitesimally short would leave us in continuous time
framework, with the above expressions being exact.

D.2.2 Proof of Proposition 1.2

Proof. Consider simultaneous-move game first. The argument proceeds in 4 steps.

1. For a given probability density function fr(rt+1, r̂t+1), we can write the objective
function as

Ef [d(rt+1, r̂t+1)] = Ef
î
(ωᵀ

t (rt+1 − r̂t+1 + µ̌r))
2
ó
= ωᵀ

tΨrωt,

where we use (in accordance with Theorem 2) notation

Ψr := Ef [(rt+1 − r̂t+1 + µ̌r)(rt+1 − r̂t+1 + µ̌r)
ᵀ].
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2. Nature solves
max
ωt

Ef [d(rt+1, r̂t+1)] ⇐⇒ max
ωt

ωᵀ
tΨrωt

subject to

ωᵀ
t1 ≤ ÛωNt ∀ÛωNt ∈ R+,

ωk,t ≥ 0 ∀k ∈ {1, . . . , K}.

(i) Perfect information case: Ψr is known. (Benchmark case.)
Notice that

V (ωᵀ
t (rt+1 − r̂t+1 + µ̌r)) =

∑
k

ω2
k,tψ

2
r,k + 2

∑
k ̸=l

ωk,tωl,tψr,kl ≤

≤
∑
k

ω2
k,tψ

2
r,k + 2

∑
k ̸=l

ωk,tωl,tψr,kψr,l ≤

≤
ÄÛωNt ä2 max

k∈{1,...,K}
ψ2
r,k.

Thus, Nature chooses corner solution:

ωk,t := ÛωNt , k = k⋆ := arg max
k∈{1,...,K}

ψ2
r,k (randomize if multiplicity),

ωk,t := 0, k ̸= k⋆.

(ii) Imperfect information case: Ψr unknown. (Simultaneous-move case.)
Still, Nature would want to choose corner solution. The principle of indif-
ference (principle of insufficient reason) entails uniform distribution for the
corner solution’s candidate:

k⋆ ∼ U({1, . . . , K}).

Thus, Nature’s move is:

ωk,t := ÛωNt , k = k⋆ ∼ U({1, . . . , K}),
ωk,t := 0, k ̸= k⋆.

3. Agent anticipates Nature’s strategy and formulates the objective function to solve
(∀ÛωAt ∈ R+; notice that ÛωAt ̸= ÛωNt in general, so coordination between players on
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exact share is not necessary for achieving an equilibrium):

min
fr(r,r̂)

∑
k

1

K
Ef [d(rt+1, r̂t+1) | ωk,t = ÛωAt ; ωl,t = 0, ∀l ̸= k] ⇐⇒

min
fr(r,r̂)

Ef
[∑
k

1

K
d(rt+1, r̂t+1)

∣∣∣∣∣∣ωk,t = ÛωAt ; ωl,t = 0, ∀l ̸= k

]
⇐⇒

min
fr(r,r̂)

Ef
[∑
k

1

K
(ωᵀ

t (rt+1 − r̂t+1 + µ̌r))
2

∣∣∣∣∣∣ωk,t = ÛωAt ; ωl,t = 0, ∀l ̸= k

]
⇐⇒

min
fr(r,r̂)

Ef
[∑
k

1

K

Ç
ωᵀ
t (rt+1 − r̂t+1 +

1

2
diag−1(Σr − Σ̂r)−

1

2
(Σr − Σ̂r)ωt)

å2
∣∣∣∣∣∣ωk,t = ÛωAt ; ωl,t = 0, ∀l ̸= k

]
⇐⇒

min
fr(r,r̂)

Ef
[∑
k

1

K

ÄÛωAt ä2 Çrk,t+1 − r̂k,t+1 +
1

2
(σ2

r,k − σ̂2
r,k)−

1

2
(σ2

r,k − σ̂2
r,k)ÛωAt å2

]
⇐⇒

min
fr(r,r̂)

Ef
[∑
k

1

K

ÄÛωAt ä2 (rk,t+1 − r̂k,t+1 + µ̌r,k(ÛωAt ))2]
subject to standard informational constraints.

4. In Nash-equilibrium of this simultaneous-move game, players’ strategies are as fol-
lows (∀ÛωAt , ÛωNt ∈ R+):

• Agent plays

f ⋆r (rt+1, r̂t+1) := arg min
fr(r,r̂)

Ef
[∑
k

1

K

ÄÛωAt ä2 (rk,t+1 − r̂k,t+1 + µ̌r,k(ÛωAt ))2] ;
• Nature plays a mixed strategy

ωk,t := ÛωNt , k = k⋆,

ωk,t := 0, k ̸= k⋆,

where
k⋆ ∼ U({1, . . . , K}).

For a game with Nature as a second-mover, the proof requires only a slight modification
in step 2, where the perfect information case applies. (Note that step 3 remains unchanged
due to previous step’s randomization in situation of multiplicity.)

D.2.3 Proof of Proposition 1.3

Proof. Plugging ÛωAt := 1ᵀωt =: Ûωt into Agent’s equilibrium strategy expression in Propo-
sition 1.2, we immediately have∑
k

1

K
Ûω2
t (rk,t+1−r̂k,t+1+µ̌r,k(Ûωt))2 ∝ (rt+1−r̂t+1+µ̌r(Ûωt))ᵀ(rt+1−r̂t+1+µ̌r(Ûωt)) =: d(rt+1, r̂t+1),

utilizing the fact that for the purpose of extremization, distance metrics are defined only
up to a constant of proportionality.
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D.3 Proof of Theorem 1
Proof. We derive (or simply guess some parts of) the specific solution to the informational
problem, then verify that it satisfies the necessary conditions for optimality. Given that
objective function is convex, it has a unique minimum, so locating one candidate solution
that satisfies the Karush–Kuhn–Tucker conditions suffices.

(a) Interior solution (“large” κ, “small” λ).

The following proof essentially replicates Sims’s (2003, 2006) arguments; but this is
a classic result in information theory, e.g. see Berger (1971) or Cover and Thomas
(2006).

1. x ∈ RK . Guess (and verify later) that x̂ ∈ RK . Hence,

ν(x, x̂) = 0 ∀x, x̂ ∈ RK .

2. Show that e− 1
λ
µ(x) = (πλ)−

K
2 is a valid element of the solution:

1 =
∫
RK

f(x|x̂) dx =
∫
RK

e
1
λ
ν(x,x̂)− 1

λ
µ(x)− 1

λ
(x−x̂+µ̌(Ûωt))ᵀ(x−x̂+µ̌(Ûωt)) =:

=:
∫
RK

b(x)(2π)−
K
2

∣∣∣∣∣λ2IK
∣∣∣∣∣
− 1

2

e−
1
2
(x−x̂+µ̌(Ûωt))ᵀ(λ

2
IK)

−1
(x−x̂+µ̌(Ûωt)) dx =

=
∫
RK

b(x)ϕ(x̂− µ̌(Ûωt)− x | λ
2
IK) dx =: (b ∗ ϕ) (x̂− µ̌(Ûωt)).

Applying Fourier transform to the convolution above, we get:

δ(ξ) = 1̃ = b̃(ξ)ϕ̃(ξ|λ
2
IK),

b̃(ξ) =
δ(ξ)

ϕ̃(ξ|λ
2
IK)

= δ(ξ)e2πi(x̂−µ̌(Ûωt))·ξ+π2λξᵀξ = δ(ξ) =

 1 if ξ = 0,

0 if ξ ̸= 0.

Inverse Fourier transform gives

b(x) =
∫
RK

b̃(ξ)e2πix·ξ dξ =
∫
RK

δ(ξ)e2πix·ξ dξ = 1;

therefore,

e−
1
λ
µ(x) = (2π)−

K
2

∣∣∣∣∣λ2IK
∣∣∣∣∣
− 1

2

= (πλ)−
K
2 .

This means
µ(x) = λ

K

2
ln(πλ).

3. Denoting
ϵ := x− x̂+ µ̌(Ûωt) ∼ N (0,

λ

2
IK),
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we can represent x as a sum of two different terms, (x̂− µ̌(Ûωt)) and “approximation
error” ϵ:

x = x̂− µ̌(Ûωt) + ϵ.

A convolution of independently distributed (x̂−µ̌(Ûωt)) with independent N -distributed
ϵ that results in N -distributed x implies N distribution for (x̂−µ̌(Ûωt)) too, and hence
also for x̂:

x̂ ∼ N (µ̂(Ûωt), Σ̂).

Therefore,

Ψ := Ef [(x− x̂+ µ̌(Ûωt))(x− x̂+ µ̌(Ûωt))ᵀ] = Eϕ[ϵϵᵀ] =
λ

2
IK ,

and we also have
Σ = Σ̂+Ψ

(it can be seen here why we needed uncorrelated random variables: diagonal Σ ensures
that resulting Σ̂ is positive semi-definite).

Lastly, conformity of the means (accounting for the bias term) as well as conformity
of the variances in case of N densities f(x|x̂) and h(x̂) necessarily leads to their
product f(x, x̂) satisfying the constraint

∫
supp(h) f(x, x̂) dx̂ = g(x) ∀x ∈ supp(g)

(the µ(x)-constraint).

4. Information processing capacity constraint reduces to

κ =
1

2
(ln |Σ| − ln |Ψ|) = 1

2

Ç
ln |Σ| − ln

∣∣∣∣∣λ2IK
∣∣∣∣∣
å
,

which means that
λ = 2

Ä
e−2κ|Σ|

ä 1
K .

(b) Boundary solution (“small” κ, “large” λ).

The essense of this proof is known in information theory as “reverse water-filling”
solution, or more accurately “reverse water-filling on the eigenvalues” for cases like
ours, e.g. see Berger (1971). This procedure is more general than what was used for
interior solution.

0. If the condition σ2
k >

λ
2

∀k ∈ {1, . . . , K} doesn’t hold, i.e. ∃k ∈ {1, . . . , K} : σ2
k ≤

λ
2
, the interior solution violates the constraint

∫
supp(h) f(x, x̂) dx̂ = g(x) ∀x ∈ supp(g)

(the µ(x)-constraint).

1. x ∈ RK . Look for solution with x̂ ∈ Rk∗ × {µ̂k∗+1(Ûωt), · · · , µ̂K(Ûωt)} (otherwise,
ϵk∗+1, · · · , ϵK will have non-zero means in order to satisfy the µ(x)-constraint). Hence,

ν(x, x̂) = 0 ∀x ∈ RK ,∀x̂ ∈ Rk∗ × {µ̂k∗+1(Ûωt), · · · , µ̂K(Ûωt)}.
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2. Show that e− 1
λ
µ(x) = (2π)−

K
2

(Ä
λ
2

äk∗
σ2
k∗+1 × · · · × σ2

K

)− 1
2 is a valid element of the

solution:

1 =
∫
RK

f(x|x̂) dx =
∫
RK

e
1
λ
ν(x,x̂)− 1

λ
µ(x)− 1

λ
(x−x̂+µ̌(Ûωt))ᵀ(x−x̂+µ̌(Ûωt)) dx =:

=:
∫
RK

b(x)(2π)−
K
2 |Ψ|−

1
2 e−

1
2
(x−x̂+µ̌(Ûωt))ᵀΨ−1(x−x̂+µ̌(Ûωt)) dx =

=
∫
RK

b(x)ϕ(x̂− µ̌(Ûωt)− x | Ψ) dx =: (b ∗ ϕ) (x̂− µ̌(Ûωt)).
Applying Fourier transform to the convolution above, we get:

δ(ξ) = 1̃ = b̃(ξ)ϕ̃(ξ|Ψ),

b̃(ξ) =
δ(ξ)

ϕ̃(ξ|Ψ)
= δ(ξ)e2πi(x̂−µ̌(Ûωt))·ξ+π2(λ

∑k∗
1
ξ2k+2

∑K
k∗+1

σ2
kξ

2
k) =

= δ(ξ) =

 1 if ξ = 0,

0 if ξ ̸= 0.

Inverse Fourier transform gives

b(x) =
∫
RK

b̃(ξ)e2πix·ξ dξ =
∫
RK

δ(ξ)e2πix·ξ dξ = 1,

therefore,

e−
1
λ
µ(x) = (2π)−

K
2 |Ψ|−

1
2 = (2π)−

K
2

(Ç
λ

2

åk∗
σ2
k∗+1 × · · · × σ2

K

)− 1
2

.

This means

µ(x) = λ

(
K

2
ln(2π) +

1

2
ln

(Ç
λ

2

åk∗
σ2
k∗+1 × · · · × σ2

K

))
.

3. Denoting
ϵ := x− x̂+ µ̌(Ûωt) ∼ N (0,Ψ),

we can represent x as a sum of two different terms, (x̂− µ̌(Ûωt)) and “approximation
error” ϵ:

x = x̂− µ̌(Ûωt) + ϵ.

A convolution of independently distributed (x̂−µ̌(Ûωt)) with independent N -distributed
ϵ that results in N -distributed x implies N distribution for (x̂−µ̌(Ûωt)) too, and hence
also for x̂:

x̂ ∼ N (µ̂(Ûωt), Σ̂).
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Therefore (with {e1, . . . , eK} being the standard basis of RK),

Ψ := Ef [(x− x̂+ µ̌(Ûωt))(x− x̂+ µ̌(Ûωt))ᵀ] = Eϕ[ϵϵᵀ] =

λ2Ik∗ 0

0
∑K−k∗
k=1 eᵀ

kΣk∗+1Kek

 ,
and we also have

Σ = Σ̂+Ψ

(it can be seen here why we needed uncorrelated random variables: diagonal Σ ensures
that resulting Σ̂ is positive semi-definite).

Lastly, conformity of the means (accounting for the bias term) as well as conformity
of the variances in case of N densities f(x|x̂) and h(x̂) necessarily leads to their
product f(x, x̂) satisfying the constraint

∫
supp(h) f(x, x̂) dx̂ = g(x) ∀x ∈ supp(g)

(the µ(x)-constraint).

4. Information processing capacity constraint reduces to

κ =
1

2
(ln |Σ| − ln |Ψ|) = 1

2

Ñ
ln |Σ| − ln

∣∣∣∣∣λ2Ik∗
∣∣∣∣∣− ln

∣∣∣∣∣∣
K−k∗∑
k=1

eᵀ
kΣk∗+1Kek

∣∣∣∣∣∣
é
,

which means that
λ = 2

Ä
e−2κσ−2

k∗+1 · · · σ−2
K |Σ|

ä 1
k∗ .

D.4 Proof of Theorem 2
Proof. Premultiplying with Ξ equation x = x̂− µ̌(Ûωt) + ϵ produces

rt+1 = r̂t+1 − µ̌r(Ûωt) + ϵr,t+1,

using (I.53), (I.54), (I.55), and defining ϵr,t+1 := Ξϵ.

Premultiplying with Ξ and postmultiplying with Ξ−1 equation Σ = Σ̂+Ψ produces

Σr = Σ̂r +Ψr,

as from formulas in P�, Σ̂r := ΞΣ̂Ξ−1 and Ψr := ΞΨΞ−1.

Given that x̂ ∼ N (µ̂(Ûωt), Σ̂), r̂t+1 = Ξx̂ (from equation I.54) is distributed as
N (Ξµ̂(Ûωt),ΞΣ̂Ξᵀ). Since before the decorrelating transformation mean of r̂t+1 was µ̂r(Ûωt)
by Proposition 1.1, and also using relationships in P�, we have r̂t+1 ∼ N (µ̂r(Ûωt), Σ̂r).

Given that ϵ ∼ N (0,Ψ), ϵr,t+1 = Ξϵ (by the definition from above) is distributed as
N (Ξ0,ΞΨΞᵀ). Using relationships in P� we get ϵr,t+1 ∼ N (0,Ψr).
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D.5 Proof of Proposition B.1
Proof. Let θι−1 := {q0,t,ι−1, qt,ι−1} be the proposed parameter choice that has been ac-
cepted at iteration (ι− 1). By construction, it approaches the optimal parameter choice
θ∗, i.e. ||θι−1 − θ∗||22 → 0 as ι increases. The corresponding update of the bias of the
mean can then be represented by
∣∣∣∣∣∣µ̌r,ι−1 − µ̌r

∣∣∣∣∣∣2
2
=
∣∣∣∣∣∣∣∣12diag−1(Σr − Σ̂r,ι−1)−

1

2
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1

2
diag−1(Σr − Σ̂r) +

1

2
(Σr − Σ̂r)ωt

∣∣∣∣∣∣∣∣2
2
=

=
∣∣∣∣∣∣∣∣12diag−1(Ψr,ι−1)−

1

2
Ψr,ι−1ωt,ι−1 −

1

2
diag−1(Ψr) +

1

2
Ψrωt

∣∣∣∣∣∣∣∣2
2
=

=
∣∣∣∣∣∣∣∣12diag−1(Ψr)−

1

2
Ψrωt,ι−1 −

1

2
diag−1(Ψr) +

1

2
Ψrωt

∣∣∣∣∣∣∣∣2
2
=

=
1

2
||Ψr (ωt,ι−1 − ωt)||22 =

=
1

2
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1
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diag(P t)
Ä
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t
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≤

≤ 1
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1

Wt

diag(P t)
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∣∣∣∣∣
2

2
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t

∣∣∣∣∣∣2
2
,

where the third equality is due to invariance of the solution to informational problem
(modulo specific values of the bias term), and the weak inequality is due to consistency
of induced matrix norm. Clearly, improvement in qt,ι−1 directly leads to improvement in
µ̌r,ι−1.

We are dealing with a well-posed consumption-investment maximization problem that
posesses a unique maximum to which the above iterative optimization procedure con-
verges. Covergence at some iteration ι by definition means that (making the dependence
of φ(·|θ) on µ̂r and in turn on µ̌r explicit)∣∣∣∣∣∣φ(Ξᵀr̂t+1|θι, µ̂r(µ̌r,ι−1))− φ(Ξᵀr̂t+1|θ∗, µ̂r(µ̌r))

∣∣∣∣∣∣2
2
< εφ

for some pre-specified εφ > 0. This corresponds to covergence in chosen parameters:∣∣∣∣∣∣qt,ι − q∗
t

∣∣∣∣∣∣2
2
≤ ||θι − θ∗||22 < εθ

for some small εθ > 0, as well as in bias of the mean:

||µ̌r,ι − µ̌r||22 ≤
1

2
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diag(P t)
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2

2

∣∣∣∣∣∣qt,ι − q∗
t

∣∣∣∣∣∣2
2
< Mεθ =: εµ

for some 0 < M <∞ (finiteness of M is guaranteed by stationarity of the environment).
According to optimization procedure considered here, upon reaching the optimum we

have
qt,ι = qt,ι−1,
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with a related implication for updating of the bias term:

µ̌r,ι =
1

2
diag−1(Σr − Σ̂r,ι)−

1

2
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1

2
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2
Ψr

1

Wt
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2
diag−1(Ψr)−

1

2
Ψr

1

Wt
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1

2
diag−1(Σr − Σ̂r,ι−1)−

1

2
(Σr − Σ̂r,ι−1)ωt,ι−1 = µ̌r,ι−1.

Which is immediately reftected in update of the mean, verifying the convergence:

||φ(x|θι−1)− φ(x|θ∗)||22 =
∣∣∣∣∣∣φ(Ξᵀr̂t+1|θι, µ̂r(µ̌r,ι))− φ(Ξᵀr̂t+1|θ∗, µ̂r(µ̌r))
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2
< εφ.

Finalizing the argument, at every iteration Theorems 1–2 hold with bias term µ̌r,ι and
mean µ̂r,ι. Moreover, at the optimum µ̌r,ι, µ̂r,ι and ωt,ι are consistent with definitions for
µ̌r, µ̂r and ωt in Proposition 1.1. This gives the stated result.

D.6 Proof of Corollary 2
Proof. For rt+1 ∼ N (µr,Σr) (equation 8), with Σr = ΞΣΞ−1 and Σ diagonal (using
formulas in P�), we have

ρr,kl :=
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2
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m
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2
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From Theorem 2 we obtain r̂t+1 ∼ N (µ̂r, Σ̂r), where Σ̂r = ΞΣ̂Ξ−1 with diagonal Σ̂,

hence

ρ̂r,kl :=
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In the interior solution case, ψ2
m = ψ2

n,∀m,n ∈ {1, . . . , K}, thus

ρ̂r,kl =
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2
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with the last equality following from orthogonality of the matrix of eigenvectors Ξ, i.e.
from the fact that ∑K

m=1 ξkmξlm = δkl, where δkl is Kronecker delta function returning 1
when k = l and 0 otherwise. Simple algebraic manipulations deliver the stated relation-
ship:

ρ̂r,kl = ρr,kl ×
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ä1/2 , ∀k, l ∈ {1, . . . , K},
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with the fraction term on the right clearly being larger than or equal to 1, thus pushing
|ρ̂r,kl| from |ρr,kl| towards 1. Lastly, Theorem 1 provides the value of ψ2

1.
In the boundary solution case, ψ2

m ̸= ψ2
n,∀m,n ∈ {1, . . . , K} in general, so a simple

argument from above does not go through. The proof is based instead on providing two
contrasting examples. Given set {σ2

k}K1 sorted in descending order, for each k ∈ {1, . . . , K}
take

ψ2
k :=

 σ2
K if k = K,

σ2
K + ψ2

+ if k ̸= K,

where σ2
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+ ≥ 0 for every k ∈ {1, . . . , K − 1}. Then we have:
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with the last step using orthogonality of the matrix of eigenvectors Ξ. Now consider the
limit of ρ̂r,kl when σ2

K becomes negligibly small:

ρ̂r,kl,-K := lim
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Evaluated at ψ2

+ := 0, this limit for ρ̂r,kl would coincide with its counterpart for ρr,kl
irrespective of the values of ξkK and ξlK :
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Assume ρr,kl,-K > 0. Choose ξkK = ±1/
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2, which produces
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Given that expression ρ̂r,kl,-K is continuous and differentiable on the whole interval of
admissible ψ2

+, we can take respective derivative at point ψ2
+ = 0, obtaining (after some
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rearrangement):
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By Young’s inequality for products,
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with equality holding if and only if ∑K−1
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hold, there always exists ρr,kl,-K ∈ (0, 1] such that ∂ρ̂r,kl,-K/∂ψ2
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+=0

> 0, in which case ρ̂r,kl
moves away from ρr,kl towards 1; and even without invocation of Young’s inequality, it’s
trivial to find ρr,kl,-K ∈ (0, 1] such that ∂ρ̂r,kl,-K/∂ψ2

+

∣∣∣
ψ2
+=0

< 0, in which case ρ̂r,kl moves

away from ρr,kl towards 0. If ρr,kl,-K = 0, we immediately get ∂ρ̂r,kl,-K/∂ψ2
+

∣∣∣
ψ2
+=0

< 0, in
which case ρ̂r,kl moves away from ρr,kl = 0 towards -1. (The situation under assumption
of ρr,kl,-K < 0 can be handled similarly.)
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