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Abstract

Economic agents live in a dynamic, perpetually changing environment. The en-

suing scarcity of information is tackled with invariant ignorance priors, forcing said

agents to overweight the chances of less frequent events. Beliefs are updated from di-

verse information sources, each source assigned an appropriate degree of confidence,

and with directly sampled information serving as a canonical metric. Empirically,

these mechanisms allow to rationalize and reproduce (i) the prospect theory’s prob-

ability transformations and the choices from experienced, described, or ambiguous

probabilities documented earlier in laboratory experiments (while also accounting

for the effect of dynamic belief updating), as well as (ii) the equity premium/risk-free

rate levels and equity/dividend volatility scaling observed in financial markets.
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1 Introduction

A classical problem originating in statistics and decision theory is accounting for unseen

events. Pierre-Simon Laplace (1812) posed it as a question about the chances the sun will

rise tomorrow given it always had for the past 5,000 years, and he formulated his rule of

succession as a candidate solution to this sunrise problem. Alan Turing and I.J. Good

(1953) encountered this issue while decoding the German Enigma machine cypher, later

exemplifying it with the problem of estimating the number of yet undiscovered animal

species or vocabulary words, thus relating it to computational linguistics more generally.

Recent studies from the computer science and machine learning community tackle this

problem more rigorously, dealing with optimal coverage adjustment and smoothing of the

distributions, identifying their shapes and various statistics.1 The somewhat older works

of Keynes (1921), Jeffreys (1939, 1946) and, very prominently, Jaynes (1957a, 1957b) were

concerned with fundamentally related problems.

The need to conduct inference about, to estimate and to account for unobserved classes

of contingencies, the very fact of whose existence is unknown, also arises in economics.

Consumers, investors, entrepreneurs and job-seekers do not live in a static world, but

rather face an evolving stochastic environment that must be learned and responded to in

real time. In elementary cases, people regularly encounter new tasks of choice under risk,

often being forced to make a decision after only cursory experience (e.g., consider binary

lotteries with limited information about the success probabilities). In more complex

cases, overall economic regimes change, and what people had learned about the previous

regimes is of little or no use (e.g., parameters driving the macro environment are perturbed

or completely reset). Turning to jargon, in a non-ergodic2 world economic agents are

permanently struggling with “small samples” (at least in the sense of effective sample

size).

This non-ergodic, substantially undersampled environment gives rise to permanent

parameter and model uncertainty. The principle of indifference, broadly understood as

indifference between equivalent states of knowledge, offers ways of dealing with such ig-

norance in a disciplined manner. In the context of a decision problem, it is usually

implemented by the method of maximum entropy3 and/or the method of invariance to

reparameterization. The first method explicitly focuses on using as little extraneous in-

formation as possible about the objects (variables or parameters4) involved into analysis.

The second requires the analysis to be unaffected by the equivalent transformations of

1For example, see Nemenman et al. (2002), Orlitsky et al. (2003), Paninski (2003), Hausser and

Strimmer (2009), Valiant and Valiant (2017).
2Ergodic stochastic process has its time average equal to ensemble average (e.g., different ensembles

may represent different realizations of random parameter initializations).
3Entropy of a random variable may be thought of as a measure of the variable’s dispersion. This

concept plays an important role in the information theory (see MacKay, 2003, for a good introduction).
4Note that in a hierarchical analysis like ours, what is treated as a variable upstream may become a

fixed parameter downstream.
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such objects. Within the Bayesian framework and for the basic univariate cases we con-

sider, they both reduce to a simple mathematical formulation assigning very natural prior

probability distributions (known as Jeffreys’s approach). They also admit transparent

analytical solutions (exploiting the so-called conjugacy).5

We apply this indifference-motivated approach to the canonical problems of decision-

making under uncertainty, such as primitive binary lotteries as well as the consumption-

investment choice. It is standard to assume that lotteries and investment opportunities

are driven by parametric Bernoulli and Normal probability distributions, respectively. On

top of that, our decision problems are combined with online learning of the unknown pa-

rameters. As a consequence, Bayesian updating with invariant ignorance (i.e., indifferent,

Jeffreys) priors produces the posterior distributions that: (i) have, respectively, Beta and

Student’s t forms, and (ii) are biased, or “shrunk”, toward quasi-uniformity. That is,

the less probable parts of the above posteriors are amplified in comparison to original

distributions. Moreover, in a permanently undersampled environment, the amplification

effect of such non-informative priors never washes away. From the agents’ perspective,

these inferred posterior distributions are used in place of unobserved data-generating, or

“population”, distributions that are responsible for producing observed sample realiza-

tions.

This framework naturally delivers an interpretable measure of confidence in a given

data-generating mechanism and source of uncertainty (as introduced by Ellsberg, 1961;

Fox and Tversky, 1995; also see Abdellaoui et al., 2011a), which boils down to a scalar

variable measured in terms of (pseudo-) observations. In the canonical case of observa-

tions on random variable draws, data is sampled directly as, say, lottery outcomes (this

is tantamount to “experienced” probabilities in the literature). In another case that is

common in laboratory settings, information about the probability distribution in question

is communicated in the form of declared parameter values, an example is announcing the

success probability of a binary lottery to participating agents (providing them with “de-

scribed” probabilities). Lastly, details about a given probability distribution may remain

completely unknown, or ambiguous, and the agents may be informed only about the pos-

sible combinations of events in the decision problem considered, such as the total number

and possible colors of balls in the urn as well as the colors of favorable outcomes (which

gives rise to “judged” probabilities). Furthermore, such calculus of confidence allows to

assign a natural scale on the prior distributions—in terms of pseudo-observations—that

determines the strength of shrinkage they exert on posterior distributions ultimately used

in decision-making.

While the standard setting for discrete probability distributions is lotteries and urns

with balls in the lab, the canonical setting for continuous densities is probably asset pricing

in financial markets, in which case the non-ergodicity of different lotteries is replaced with

5See Jaynes (2003) for an extensive discussion; Kass and Wasserman (1996) provide an excellent

review.
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evolving macro-financial regimes. In the latter environment, the counterparts to decisions

from experience and decisions under conditions of ambiguity are, respectively, decisions

under current and under new regime.

On the empirical side, allowing for such regime changes and using the invariant ig-

norance prior updated with sufficient statistics capturing the historical properties of the

data, we successfully replicate the “puzzles”6 about the levels of the equity risk premium

and risk-free rate as well as about the discrepancy between equity and dividend volatil-

ities found in the post-World War II U.S. data, without resorting to implausible levels

of risk aversion. Crucially, regime changes are identified on the basis of daily-frequency

stock returns, which lets us capture shifts that occur relatively often but have modest

magnitudes.

An equally parsimonious model with invariant ignorance prior is able to replicate the

results of laboratory experiments with binary lotteries in ambiguity-, description- and

experience-based scenarios7, matching Kahneman and Tversky’s (cumulative) prospect

theory’s “probability distortions” as well as addressing Allais’s and Ellsberg’s “para-

doxes”8 simultaneously (as long as structural differences in the corresponding sources

are properly accounted for, more on which below). However, in contrast to our findings

with investments on financial markets, taking the results of laboratory experiments and

extracting their subjects’ beliefs that fit the data best, we see that such revealed priors

are somewhat different from the Jeffreys’s invariant prescriptions: while being similarly

ignorant, they are “stronger” in the sense of inducing more shrinkage to the center and

rigidity to new information (the exact magnitudes differ depending on the experiment,

but in all cases they are dominated by the communicated external information, and thus

do not depart too far from the invariant alternative).9

Importantly, our data on observed draws of lottery outcomes allow to explicitly test

a belief updating mechanism, and among the two equally-parameterized model formu-

lations, the one that accounts for the dynamics of information arrival explains subjects’

behavior more accurately than the one relying on sufficient statistics only. Also, benefiting

from the mutually consistent treatment of different sources of uncertainty, we are able to

compare attitudes to them: in the data, experienced and described probabilistic informa-

tion receive quantitatively similar degrees of confidence, and, notably, so do the judged

probabilities. In the latter case, subjects’ behavior is consistent with them repeating the

approach they take for lotteries under risk at each of the two stages of ambiguous lotteries

recursively, and there is no need for an additional ambiguity-attitude parameter(s) in the

6Raised by Mehra and Prescott (1985), Weil (1989), Shiller (1981).
7For definitions and background, see Hertwig et al. (2004), Abdellaoui et al. (2011a, 2011b).
8See Allais (1953), Ellsberg (1961), Kahneman and Tversky (1979, 1992), Camerer and Ho (1994),

Wu and Gonzalez (1996), Abdellaoui (2000), Bruhin et al. (2010), Fehr-Duda and Epper (2012), Chew

et al. (2017), Halevy (2007).
9Stronger priors may be motivated by the desire for robustness to serial correlation in the data, errors

in external or internal information processing.
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objective function.

The main contributions of the paper can be summarized as follows. First, on the

methodological front, we compile—from relatively standard ingredients—a tractable model

of decision-making implementing a systematic Bayesian approach with theoretically mo-

tivated prior distributions, which quantifies the strength of prior beliefs and confidence in

communicated information in terms of (pseudo-) observations, as well as recognizes the

fundamental role of dynamics and allows for changes in the environment or the updating

of beliefs. We apply this rational approach across the domains of laboratory experiments

and public financial markets as well as under conditions of risk and ambiguity.

Second, turning to empirical results, for binary lotteries the proposed model not only

fits data equally well if not better than an approach based on flexible probability weighting

functions despite the latter’s richer parameterization, but—more importantly—in a test

of the parsimonious mechanism of belief-updating it shows a superior performance over an

equivalent in complexity static alternative. Another important finding is that subjects of

laboratory experiments exhibit a surprisingly harmonious behavior across different lottery

mechanisms and communication scenarios, in particular their treatment of lotteries under

conditions of ambiguity is not different from that of lotteries under risk provided only

that we account for the higher-order, compounded nature of the former mechanism.

For investments, the model demonstrates how accounting for a changing environment

with indifference priors followed by the learning process allows to fit key moments in

macro-financial data under a plausible degree of risk aversion, with regime changes iden-

tified using statistical state-of-the-art changepoint detection methods.

When comparing the performance of the invariant ignorance priors across domains, we

find that they characterize quite accurately the behavior of financial market participants,

but the experimental subjects appear to hold ignorant priors that are stronger than what

is prescribed by parameterization invariance, i.e., the subjects have relatively rigid beliefs

that are less responsive to the updating information.

In addition to literature references included throughout the text, studies closely related

to the present work include the following ones. Probability distortions demonstrated by

human subjects in laboratory experiments have been in focus of recent literature that

progressed from derivations based on plausible postulates and reduced-form principles

(such as Zhang and Maloney, 2011) to proposing detailed mechanisms as in the studies

on adjustment to cognitive noise (Steiner and Stewart, 2016; Enke and Graeber, 2019;

Khaw, Li, Woodford, 2023, 2021; Frydman and Jin, 2022; Juechems et al., 2021; Netzer et

al., 2022; Vieider, 2024). In contrast to these works, the current paper derives probability

distortions relying on theoretically motivated indifference priors as a preemptive response

to changing stochastic environment (which is also more convincing in application to the

aggregate stock market).

A parallel theme in this literature is parameter/state learning and belief updating.

Examples include an empirical study by Van de Kuilen and Wakker (2006) as well as a
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recent methodological contribution by Augenblick and Rabin (2021).10 A closely related

paper is Aydogan (2021), who postulates a similar belief updating rule as a descriptive

hypothesis without deriving it from first principles, but then feeds its result into standard

prospect theory’s probability weighting and value functions modeling the special case of

binary choice between ambiguous lotteries; he does not consider a Jeffreys indifferent

prior. Moreover, this paper focuses on a fairly minimalist rational Bayesian updating that

treats different communication scenarios in a mutually consistent manner.

We exploit the connection between the ideas or problems from (micro) economic the-

ory on the one side and (macro) finance on the other. Within the latter, one relevant

line of research is macro-financial regime changes. The closest recent example is Smith

and Timmerman (2021), with our differences lying in the identification method used

(medium-frequency cross-sectional information there versus higher-frequency time-series

information here), and as a result in the number of detections (higher, in our case).11 In

asset pricing this paper is related to the literature on the effects of rare events, both those

objectively happening (e.g., see Barro, 2009, or Tsai and Wachter, 2016) and subjectively

expected (Weitzman, 2007). The most relevant previous work here is Weitzman (2007),

who proposes a Bayesian view on the risks from unobserved rare events (“peso problem”);

our paper’s novelty is in the more tangible nature of the considered rare events as well

as in a higher analytical tractability of the theoretical model. It is also worth mentioning

Ghaderi et al. (2022), who calibrate a macro-financial model featuring rare events that

fits many data moments without requiring the realization of implausibly large instanta-

neous shocks, similarly to this paper; but it focuses on negative disaster shocks only, and

employs a very different driving mechanism with many more free parameters.

Dynamic aspects take an important role in the macro-finance domain, hence model,

parameter and state learning are ubiquitous features there. Besides above-mentioned

Weitzman (2007) and Ghaderi et al. (2022), recent examples include Johannes et al.

(2016) and Collin-Dufresne et al. (2016) in finance, Kozlowski et al. (2020) and Farmer et

al. (2024) in macroeconomics.12 Broadly speaking, the distinctiveness of our formulation

is the consistency with the micro-level decision problem, whereby the risks of regime

changes are tackled by adopting the Jeffreys’ indifferent ignorance prior.13

In addition to the above-mentioned rational approaches, within macro-finance there

is also an influential literature that is particularly focused on (arguably, more realistic)

microeconomic premises by relying on the boundedly rational, psychological and other

10An earlier relevant literature includes, among others, Grether (1980) as well as Hogarth and Einhorn

(1992).
11Also see Farmer et al. (2023) and Borup et al. (2024), who consider a related question, the time-

varying predictability of stock and bond returns.
12But this literature goes back even further to Timmermann (1993) and Veronesi (1999).
13Earlier works recognizing the limitations of the available sample of macro-financial statistics and/or

the evolving nature of the underlying economic parameters include McGrattan and Prescott (2003 and

2005), Dimson et al. (2003), Fama and French (2002).
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“behavioral” arguments. For instance, investors’ belief updating has been modeled using

Kahneman and Tversky’s representativeness heuristic, with application to explaining the

dynamics of bond (Bordalo et al., 2018) and stock markets (Bordalo et al., 2019).

Another popular strategy in this literature segment is explicitly endowing agents in

financial markets with prospect theory-style probability weighting functions. Both the

equity market (Barberis and Huang, 2008; De Giorgi and Legg, 2012; Barberis et al.,

2021) as well as the options market (Polkovnichenko and Zhao, 2013; Baele et al., 2019)

have been fruitfully studied through this lens.14 In contrast to such studies, this paper

maintains the basic premises of rationality (and standard preferences). For example in

the case of tail probabilities’ amplification, we derive it using Bayesian principles, rather

than adopt the probability weighting stipulations from the prospect theory taken as an

approximate description of human behavior.

2 Motivation

Laboratory experiments with risky lotteries reveal a number of biases and distortions

relative to the standard expected utility benchmark. Accounting for these distortions

helps understand the prices of capital assets that are traded on financial markets.

2.1 Probability distortions in lotteries

Consider prospect theory (Kahneman and Tversky, 1979) along with its refinement, the

cumulative prospect theory (Tversky and Kahneman, 1992).15 It applies to choice under

risk and captures vast experimental evidence collected on such choices, offering robust

empirical predictions. In particular, it is consistent with Allais’s (1953) experimental re-

sults that challenge the conventional expected utility theory of choice. As the authors

themselves emphasize, the cumulative prospect theory (CPT) is not normative and pre-

scriptive, but rather positive and descriptive.

CPT stipulates that (after the initial framing stage) the overall value of an uncertain

“prospect” is the sum of values of the outcomes v(·) each multiplied by the decision

weight π(·). The outcome is defined with respect to a reference point, and the value

function potentially differs for positive (“concave for gains”) and negative (“convex and

steeper for losses”) deviations from the reference point. The decision weight for some

outcome is a local increment of the probability weighting function W (·), which in turn

is defined as a non-linear transformation of the right (left in the case of losses) tail of

the original probability distribution P (·) at a given point. The probability weighting

function is supposed to overweight the small probabilities in the tails and underweight

14More generally, non-expected-utility models have appealing features for understanding macroeco-

nomics and finance, with Ai and Bansal (2018) as well as Beason and Scherindorfer (2022) being among

the recent proponents.
15For a recent analysis, tests and interpretation, see Peterson et al. (2021) or Gonzalez and Wu (2022).
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the moderate and large probabilities in the center of the original distribution (in this

regard, the term “distortion” is also commonly used).16

We adopt the functional form of the CPT’s probability weighting function due to

Goldstein and Einhorn (1987),

W (P ) :=
ψP η

ψP η + (1− P )η
, (1)

where η ≥ 0 is a parameter largely governing the slope of the weighting function,and

ψ ≥ 0 is a parameter governing the function’s elevation, with η = ψ = 1 corresponding

to the standard linear probability weighting.

As another necessary ingredient, we allow for a power form of the value function,

v(x) := sign(x)× |x|φ, (2)

where x ∈ R is lottery payoff and φ ≥ 0 is a parameter.

To estimate the parameters, we turn to the work of Bruhin et al. (2010) and use

their data on a large number of laboratory experiments with primitive stochastic lotteries

conducted in Switzerland and China. The data set includes certainty equivalents for

binary lotteries over real monetary gains or losses (mixed lotteries were not considered),

comprising 17800 observations in total.

A comprehensive modeling of decision-making involving lotteries and estimation re-

sults for the above data set are presented later in sections §3.2 and §4.1. But at this point

we are only interested in the measurements of η and ψ parameters. Taking a symmetric

approach to gains and losses, their estimates of 0.41 and 0.98, correspondingly, reveal

a notable deviation from linearity (as illustrated by the resulting weighting function in

Figure 1).17

2.2 Investment puzzles

We now verify that CPT-style probability weighting helps rationalizing the prices and

outcomes observed on financial markets. In particular, we focus on the magnitudes of

equity risk premium and risk-free rate. The standard consumption-based asset pricing

equation (see Lucas, 1978) is

1 ≡ Eπ
t [Mt+1Rt+1] := Eπ

t

ï
β
u′(Ct+1)

u′(Ct)
Rt+1

ò
, (3)

16Note that in the case of binary lotteries CPT coincides with the earlier prospect theory, which makes

the decision weight-related calculations involving tails and cumulative distribution functions trivial.
17The estimation is conducted on pooled data by maximum likelihood accounting for error heteroscedas-

ticity proportional to lottery range. With the estimate of parameter φ at 1.02, the value function is close

to risk-neutrality (hence it is sensible to transfer the resulting probability weighting function to asset

pricing setting, which we do next). The subsequent results in §2.2 are very similar if we use instead the

CPT estimates from §4.1.
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Figure 1: Cumulative prospect theory’s probability weighting function,

probability weighting (vert. axis) vs. cumulative distribution (horiz.) functions

(parameterization used is W (P ) from equation (1) with η̂ = 0.41 and ψ̂ = 0.98).

where π(·) is the relevant beliefs-induced probability density function; Mt+1 is a useful

model-induced object called stochastic discount factor (SDF) or pricing kernel, which

is defined as the marginal rate of substitution between consumption at time periods t

and t + 1, with β being a subjective time discount rate; Rt+1 := (St+1 + Dt+1)/St is

asset gross return at time t + 1, with St+1 and Dt+1 being the corresponding stock price

and dividend payment; and Cs is consumption level at time s (and where consumption

always equals dividends, Cs ≡ Ds at each time period s, due to the general equilibrium

restriction).18 Intuitively, Mt+1 discounts the future random payoff Rt+1 depending both

on time preference and state of the world between today and tomorrow, and in expectation

the corresponding asset should be valued at 1 (due to normalization). In this context,

a commonly used utility function is of the constant relative risk aversion (CRRA) form,

u(Ct) := C1−γ
t /(1 − γ), with γ being a RRA coefficient. Then, equation (3) implies the

value for the risk-free rate Rf,t equal to

Rf,t :=
1

Eπ
t [Mt+1]

, (4)

and for the risk premium on the market return Rt+1 equal to

Eπ
t [Rt+1]−Rf,t := −Covπt [Rt+1,Mt+1]

Eπ
t [Mt+1]

. (5)

Our data set includes several macro-financial time series: stock and government bill

returns as well as aggregate consumption and dividends for the United States after World

War II.19 The top row of Table 1 provides selected sample statistics.

18Henceforth, we often use the lowercase symbol to denote a natural logarithmic transformation of its

uppercase counterpart, for example, rt := lnRt.
19We abstract away from labor income, although empirically it constitutes a large share of the national

income.
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Table 1: Calibration Results for Investment Decisions — a Puzzle and a Hint

π(r) γ Eπ[rf ]
√

Vπ[rf ] Eπ[r − rf ]
√

Vπ[r] Eπ[∆c]
√
Vπ[∆c] Eπ[∆d]

√
Vπ[∆d]

Empirical, π̂ n/a 0.0066 0.0131 0.0674 0.1628 0.0129 0.0154 0.0277 0.0413

Model, N 1 0.0607 n/a 0.0133 0.1628 0.0640 0.1628 0.0640 0.1628

Model, N 2 0.0607 n/a 0.0133 0.1628 0.0320 0.0815 0.0320 0.0815

Model, N 3 0.0607 n/a 0.0133 0.1628 0.0213 0.0544 0.0213 0.0544

Model, N 4 0.0607 n/a 0.0133 0.1628 0.0160 0.0408 0.0160 0.0408

Model, N 5 0.0607 n/a 0.0133 0.1628 0.0128 0.0326 0.0128 0.0326

Model, CPT2 1 0.0226 n/a 0.0514 0.3208 0.0640 0.3208 0.0640 0.3208

Model, CPT2 2 0.0225 n/a 0.0515 0.3208 0.0320 0.1606 0.0320 0.1606

Model, CPT2 3 0.0225 n/a 0.0515 0.3208 0.0213 0.1071 0.0213 0.1071

Model, CPT2 4 0.0224 n/a 0.0516 0.3208 0.0160 0.0803 0.0160 0.0803

Model, CPT2 5 0.0224 n/a 0.0516 0.3208 0.0128 0.0643 0.0128 0.0643

Notes : The columns present the probability density of returns; the coefficient of relative risk aversion; the log risk-free

and excess log market returns, the per capita consumption growth (i.e., temporal difference in the log of) as well as

the dividend growth (difference in the log of) with their statistical moments. The “Empirical” row: the data sample

is U.S. 1947:Q2–2019:Q4, at a quarterly frequency (see Appendix §G for a description of data sources). The “Model”

rows: β = 0.99 per annum; the CRRA utility with a given γ; and a specified probability density of returns π(r), which

here is either Normal or based on cumulative prospect theory with 2 weighting function parameters (see text for a

detailed description). Model inputs are hypothetical πCPT (r), γ and β; the rest of the columns are model outputs.

The economic variables are measured in real terms, and measurements are converted into annualized values.
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We feed the model with a candidate probability density of stock returns π(rt), which

investors may possibly be using, and an assumed coefficient of relative risk aversion γ,

which parameterizes investors’ attitude toward risk, as well as the time discount rate fixed

at the value β = 0.99 per annum. Taking these as given, we use equations (3)–(5) within

the Lucas’s endowment economy setup to solve for the key statistical moments of the

risk-free rate, equity risk premium, as well as the consumption and dividend growth. The

target of our exercise is for these key moments, particularly the means of the risk-free

rate and risk premium, to match their empirical counterparts from the top row of Table

1. The subsequent rows of Table 1 contain the results.

First, we feed the empirical distribution of log-returns, representing it by the Normal

density with mean and variance observed in the sample, rt ∼ N (µ̂, σ̂); see the rows cor-

responding to “Model, N ” in Table 1. The computed solution, however, is not consistent

with the observed data. Most striking are the low values obtained for the risk premium

Eπ[r− rf ] and the high values for the risk-free rate rf under realistic choices of parameter

γ, classic facts known, respectively, as the “equity premium puzzle” (Mehra and Prescott,

1985) and the “risk-free rate puzzle” (Weil, 1989).

Now, assuming that investors in financial markets behave similarly to the way human

subjects behave in laboratory experiments, we apply the probability weighting function

W (Π) estimated in §2.1 to the empirical distribution of log-returns N (µ̂, σ̂) and use this

distribution instead;20 see the rows “Model, CPT2” in Table 1, also see Figure 2 for an

illustration of the empirical and the distorted distributions. Importantly, in comparison

to the Normal distribution considered earlier, a distribution distorted according to CPT

produces a much larger equity premium—e.g., for γ = 4, we have 5.16% vs. 1.33%,

respectively—so that the bulk of the puzzle vanishes. (It is also interesting to note that an

order-of-magnitude disparity between empirical volatility of returns and that of dividend

growth, posed as the “equity volatility puzzle” (Shiller, 1981), reappears here mechanically

and hence also does not contradict the CPT model’s restrictions.)21

Lastly, CPT-style probability distortions amplifying the tails of empirical distribution

of stock returns are also able to address other challenging facts in finance. One such

example is the so-called implied risk aversion “smile” pattern and the “non-monotone

pricing kernel puzzle” observed in the options segment of financial markets (as shown by

Polkovnichenko and Zhao, 2013, as well as Baele et al., 2019).

20Mean µ̂ is used as a reference point with respect to which gains or losses and respective probability

quantiles are measured.
21There are many alternative explanations of these regularities in the existing literature. Broadly

speaking, they focus either on investors’ preferences, fundamentals of the environment, or investors’

beliefs. Among the standard rational approaches, the first class is exemplified by the habit formation

model due to Campbell and Cochrane (1999), the second by the long-run risk model of Bansal and Yaron

(2004) or rare disaster risk framework from Rietz (1988), Veronesi (2004), Barro (2009), Wachter (2013).

The non-standard approaches are represented by, e.g., Epstein and Zin (1990) in the first, Barberis et al.

(2001) in the second, and De Giorgi and Legg (2012) or Barberis et al. (2015) in the third class.
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Figure 2: Empirical (solid) vs. hypothetical CPT-based (dashed) probability densities

(parameterizations used are N (µ̂, σ̂2) with µ̂ = 0.0185 and σ̂2 = 0.0066 vs.

CPT(η̂, ψ̂; µ̂, σ̂2) with η̂ = 0.41 and ψ̂ = 0.98 as well as µ̂ and σ̂2 as above).

2.3 Interpretation

Why would the CPT weighting function measured in laboratory experiments have any

relationship to asset prices formed on competitive financial markets? A promising in-

terpretation is to view the CPT not as a preference theory but as a theory of “default

actions” that are optimal only in a constrained, second-best, approximate sense (e.g., see

Bossaerts et al., 2008).22 Next we will argue that such probability distortions are indeed

rational responses to a limited information, low confidence, and extensive uncertainty,

which can be best understood from a dynamic perspective.

3 Theory

3.1 Conceptual approach

Generally speaking, the problem we are dealing with is about learning, inference and

decision in a situation of scarce data. For instance, small samples, rare events and rich

stochastic dynamics all present a challenge of this kind.

A necessary step to resolving this problem is to specify what we know and what we

do not know, and then to express our ignorance in a precise way. The “principle of

indifference” offers a disciplined approach to tackling such ignorance, stipulating that

equivalent states of knowledge should be assigned equivalent probabilities. In practice,

this principle is usually implemented through the method of invariance or transformation

groups (Jeffreys, 1939; 1946) or the method of maximum entropy (Jaynes, 1957a; 1957b).23

22This is broadly related to the concepts of “ecological rationality” (Simon, 1955, 1956; Todd and

Gigerenzer, 2012) and “shortcut heuristics” (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 2011).
23A unifying understanding of these two methods based on the “minimum description length principle”
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More concretely, taking a Bayesian perspective on probability theory, this approach

boils down to specifying carefully a non-informative prior probability distribution that

possesses the desired properties. Ultimately, combining the information contained in

the prior distribution with the information provided by sample data (if any) defines a

stochastic environment that is relevant for a particular decision choice.24

A few technical points deserve elaboration. First, the prior distributions we use are

characterized by invariance to transformations. The method of transformation groups

ensures that the specification of a given problem (in which case specification also includes

any prior probabilistic information we might have) is unaffected by equivalent transfor-

mations applied to it. In a one-dimensional case, as here, this approach coincides with the

Jeffreys method of assigning prior distributions that would be invariant to reparameteri-

zation. For instance, it delivers translation invariance for a location parameter (mean in

the case of Gaussian distribution) and measurement-units invariance for a scale parameter

(variance, respectively).

Second, these prior distributions are characterized by maximal entropy within their

corresponding classes of probability distributions. The method of maximum entropy en-

sures that the prior probability distributions considered reflect no more and no less than

the information at hand. This is achieved by maximizing a certain measure of uncer-

tainty (i.e., our lack of knowledge) taking as given the available information, explicitly

specified.25

Third, the ignorance prior distributions we thus obtain turn out to be conjugate priors,

which means that their posterior updates are preserving the distributional form (a concise

introduction to conjugate priors is available in DeGroot, 1970).26

Formally, we consider an agent solving the following problem:

max
zt∈Bt

∫
J(χt+1, zt)π(χt+1) dχt+1, (6)

where J(·) is a problem-specific objective function; χt+1 is a stochastic payoff at pe-

riod t+ 1; zt is a control vector chosen in period t; Bt is a budget set of feasible

choices in period t; π(χt+1) is a distribution of the payoff χt+1 constructed as π(χt+1) ∝∫
Θ
L(χt+1|θt)π(θt)dθt with a problem-specific probability distribution of payoffs L(χt+1|θt),

has been also proposed (Rissanen, 1983; also see Grünwald, 2007).
24At present, both of these methods lack definitive scientific consensus about how to faithfully imple-

ment them, which necessitates a certain degree of personal judgment and choice, and can be legitimately

criticized for allowing too much flexibility or even arbitrariness. We will highlight the specific instances

of this going forward.
25Or, equivalently, by minimizing the amount of “residual” information.
26This is due to the fact that we are using likelihoods from the exponential family of probability

distributions. Those admit conjugate prior distributions that also belong to the exponential family. In

turn, the exponential family distributions arise naturally as a result of entropy maximization. Moreover,

for the distributions in the exponential family, the Jeffreys priors are optimal in the “minimum description

length” sense.
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its parameter vector θt ∈ Θ and an uninformative prior on parameter values π(θt) cho-

sen by the Jeffreys method27 (we will also consider revealed priors that fit the agents’

behavior best, even if they deviate from the Jeffreys approach). The “predictive” dis-

tribution of payoffs π(χt+1) combines all information available to a decision-maker (the

data-generating distribution, the prior beliefs about its parameters as well as the data

realizations observed so far) and in the end is a function of prior’s own parameters and

relevant updating information.

3.2 Lotteries in laboratory experiments

Consider a simple lottery such that its outcome is represented by a binary random variable

x := x(ι) ∈ {x(0), x(1)} with a probability of successful outcome x(1) being equal to

p ∈ [0, 1]. The corresponding Bernoulli probability mass function defines the likelihood

of possible outcomes:28

L(ι|p) := pι(1− p)1−ι. (7)

The postulated decision-making algorithm consists of three steps:

I. Learning from meta-data, potentially followed by “decision under ambiguity”;

II. Learning from non-sample data, potentially followed by “decision from description”;

III. Learning from sample data, potentially followed by “decision from experience”.

We will expand on the details of this process next.

I. As a first step, before facing the lottery mechanism,29 hence being aware of the

primitive structure of the problem (such as how data underlying the lottery draws are

generated) but having no information about the specific characteristics of the lottery

(which in this example are captured exhaustively by the value of parameter p), the agent

formulates a prior distribution that accurately reflects his/her lack of knowledge about

the parameter (but does reflect awareness about the algebra of possible events or that

p ∈ [0, 1]). The Jeffreys method prescribes a prior proportional to the square root of the

27Equivalently, this prior can be viewed as chosen to maximize entropy E(π(θt)) subject to constraints

on the moments of distribution π(θt). Here, the Shannon entropy functional is defined as E(π(θ)) :=

−
∫
π(θ) ln(π(θ)) dθ. The moments are chosen in a way that (i) their form ensures conjugacy and (ii)

their targeted values lead to the Jeffreys solution. Required moment constraints will be given in the

relevant sections.
28That is, in equation (6) we set J(χt+1, zt) := v(χt+1) if zt = lottery, otherwise J(χt+1, zt) := v(xc),

xc ∈ R+; χt+1 := x(ι) with ι ∈ {0, 1}; zt ∈ {certain, lottery}; θt := p. Since this is a one-period problem,

we drop time subscripts; also, integration is replaced with summation.
29Say, after reading the general instructions but before taking a seat at the computer desk in the

experimental laboratory.
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Figure 3: Posterior (solid) vs. prior (dashed) probability densities

(parameterizations used are as follows: prior π(p) is B(α, β) with α = 1/2

and β = 1/2, posterior π(p|q) is B(α, β) with α = 1/2 + n× q

and β = 1/2 + n× (1− q), declared value q = 0.20

(spike with empty bullet on top), parameter n = 1, posterior

mean E[p|q] = 0.35 (spike with filled bullet on top)).

determinant of the Fisher information matrix30, which in our case yields:

π(p) ∝

√
EL

ñÅ
∂

∂p
lnL(ι|p)

ã2ô
=

1

p1/2(1− p)1/2
. (8)

This constitutes the kernel of a Beta probability distribution B(α, β) with parameters

α = 1/2 and β = 1/2.31 The corresponding symmetric U-shaped distribution (as plotted

in Figure 3) has most of its probability mass concentrated in the poles on each end of the

[0, 1] interval. Parameterization invariance implies that, rather than p itself, a transformed

parameter arcsin(p1/2) has a uniform distribution on the [0, π/2] interval.32

Thus, we obtained the Beta–Bernoulli conjugate system. Intuitively, using the insight

that any conjugate prior can be viewed as the posterior for a pseudo data set, as well

as a standard interpretation of the Beta distribution’s parameters α and β as pseudo-

observations or pseudo-counts of Bernoulli trials, values α = 1/2 and β = 1/2 represent 1

pseudo-observation equally split between a success and a failure.33 The number of pseudo-

observations in a prior may be thought of as prior’s strength, for the effect it produces on

posterior distribution.

30This ensures the parameterization invariance rather mechanically by preempting the appearance of

terms that arise from reparameterization using the standard change of variables procedure.
31In this paper B(α, β), with shapes α and β, is parameterized as f(x|α, β) := xα−1(1−x)β−1

B(α,β) =
Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1. Here, B(·, ·) denotes the Beta function, and Γ(·) denotes the Gamma func-

tion.
32This is different from the näıve non-informative prior that implies p uniformly distributed on the real

[0, 1] interval and that is obtained from the so-called Bayes–Laplace prior B(1, 1).
33The näıve Beta–Laplace prior represents 1 successful and 1 unsuccessful pseudo-counts.
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Turning to the maximum entropy approach, the Beta distribution maximizes entropy

on the [0, 1] interval subject to two symmetric constraints on the logarithm of the geo-

metric mean of the random variable p. Thus, the previous values of α and β may be

interpreted alternatively as a specific restriction in such entropy maximization problem.34

II. As a second step, now facing the lottery mechanism,35 the agent learns something

about the gamble: he is told that the probability of success is q.

Note that there are no sample data yet as the agent still has not experienced any

lottery trials. He only has some meta- and non-sample information (possibly vague or

non-credible) that can be used to modify the prior distribution—for example, to bias it

one way or another, to make it sharper or more diffuse, etc. This is in the spirit of “no-

data problem” following Chernoff and Moses (1959). In such cases, the prior to a large

extent determines the conclusion (inference or decision).

Then the agent updates the initial prior with the sufficient statistic that corresponds

to the communicated statement that the probability of success p is equal to the declared

value q; and does so using the standard mechanism of Bayesian updating, that is through

adding new (pseudo-) observations. For the Bernoulli distribution, the sufficient statistic

is the total number of successes. So, for the announced probability q, the value of such

statistic is going to be q multiplied by the number of pseudo-observations n ∈ R+ (for

actual observations it would be n ∈ N).
Consequently, the posterior distribution (the updated prior, really) is

π(p|q) = pα+nq−1(1− p)β+n(1−q)−1

B(α + nq, β + n(1− q))
, (9)

which, due to conjugacy, is also of the Beta distributional form.

If the agent has full confidence in the lottery mechanism (i.e., in the lottery organizers,

or in the device itself), then the number of pseudo-observations n tends to infinity, the

prior is washed out, and the posterior distribution becomes concentrated at the declared

value q. This is the standard case considered in textbooks. Thus, the sharpness of the

updated prior depends on n, which effectively reflects the relative degree of confidence in

the lottery mechanism.

However, there is no a priori rationale for ruling out the less-than-full confidence case

of n <∞. Indeed, taking this non-dogmatic perspective, n can be understood as degree of

confidence in (or credibility of) communicated probabilities and distributions (Ellsberg,

1961) as well as the attitude towards a source of uncertainty (Fox and Tversky, 1995;

Abdellaoui et al., 2011a).

34Geometric mean of a positive random variable p can be defined as exp(E[ln(p)]). The two constraints

are Eπ[ln(p)] ≡ ψ(α)−ψ(α+β) and Eπ[ln(1−p)] ≡ ψ(β)−ψ(α+β), where ψ(·) is the digamma function.

Seeming like an instance of those flexible choices mentioned earlier, the restriction is exp(ψ(α)− ψ(α +

β)) ≡ 1/4 for the probability of success p and exp(ψ(β)− ψ(α + β)) ≡ 1/4 for the probability of failure

(1 − p); means do not have to add up to 1. (In the Bayes–Laplace case, the corresponding numerical

values are 1/e and 1/e.)
35Say, after taking a seat at the computer desk in the lab and seeing the characteristics of the lottery.
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Then, if there is no reason to weight one type of prior information higher than the

other, by the principle of indifference between sources of pseudo-observations, n := 1 is the

value that puts two sources on equal footing and treats them equivalently.36 Intuitively,

such an approach can be interpreted as extending the existing 1 pseudo-observation from

the initial prior (itself composed of α pseudo-counts of successes and β pseudo-counts of

failures) with 1 additional pseudo-observation from the external source (composed of q

pseudo-counts of successes and (1− q) pseudo-counts of failures). (Later we will consider

cases when n is known or can be estimated, sparing us from the above assumption.)

As a consequence, we obtain the following result, formulated in terms of expected

probability E[p|q].37

Proposition 1 (Overweighting Low Probabilities and Underweighting High Probabilities,

Discrete Case). The posterior distribution of p, defined by equation (9) with 0 < n < ∞,

is not centered at the declared value q but instead is biased away from the nearby extremity

of the [0, 1] interval toward the point α/(α + β). In particular, the mean of the posterior

distribution is a ratio38

E[p|q] := Eπ(p|q)[p] =
α + nq

α + nq + β + n(1− q)
=

α + nq

α + β + n
. (10)

(All proofs are relegated to Appendix §F.)

For example, under n = 1, a declared value of q that is equal to 0.20 results in a

posterior mean of p being 0.35 (see Figure 3 for the posterior shape and mean). This

is reminiscent of the probability weighting discussed in section §2. (Note that, in con-

trast to CPT, our approach is disciplined by Bayesian formalism and does not require to

discriminate between probability weights and decisions weights.)

Indeed, juxtaposing the full range of declared probabilities s against the corresponding

posterior means of p (as presented in Figure 4) is broadly consistent with the pattern of

probability weights we have seen in §2 (as shown in Figure 1). Specifically, low proba-

bilities are increased, high probabilities are decreased, and the emerging distortions are

larger for more extreme probabilities.

Intuitively, as confidence measure n increases, the posterior mean of p approaches

linearity in q: ∂(E[p|q]− q)/∂n < 0 for q < 1/2 (assuming α = β).

As can also be seen from the above Proposition, absolute scales of α, β and n cancel

out and only their relative proportion matters. Fortunately, we will be able to pin down

36The argument here is heuristic, but it can be stated more formally, for example, probabilistically by

the method of maximum entropy that stipulates a uniform distribution of discrete probability masses

(in short, representing the relative allocation of pseudo-observations by a probability distribution, the

solution of max{ωJ,ωext}{−
∑

i ωi lnωi + λ(
∑

i ωi − 1)} gives ωJ ≡ ωext := 1/2), or by the invariance

utilizing the symmetry of information sources.
37In the binary choice setting, taking π(χt+1) := π(x(ι)) =

∫ 1

0
L(ι|p)π(p|q)dp and substituting from

equations (7) and (9), the objective function in equation (6) becomes v(x1)E[p|q] + v(x0)(1 − E[p|q]) if

zt = lottery is chosen. Hence our focus on the E[p|q] quantity.
38Cf. the usual number-of-observations–weighted average in canonical Bayesian updating.
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Figure 4: Posterior mean (vertical axis) vs. declared (horizontal axis) probabilities

(parameterization used is E[p|q] from equation (10) with α = 1/2, β = 1/2

as well as n = 1).

their scales later with the help of observed data on whole sequences of lottery realiza-

tions (exploiting the fact that directly sampled observations in our framework represent

a canonical type of information that can serve as a gauge for other quantities).

With the updated prior as described, the agent is optimally equipped to make the

decision based on the description of payoffs and probabilities of the proposed lottery.

III. As a third step, the agent is now ready to learn from his own observations when

more than one trial of the same lottery is run, leading him to make decisions from ex-

perience.39 Clearly, given such an ergodic and stationary environment, the posterior

distribution will converge to a probability mass of 1 at q, and eventually, he will learn the

true lottery parameter perfectly (thus exhibiting linear probability weighting).

Henceforth, we separate the measures of confidence in communicated probabilities in

different informational scenarios denoted by n into: (i) na for the judged probability in

decisions under ambiguity; (ii) nd for the declared, or described probability in decisions

from description; and (iii) ne for the drawn, or experienced probability in decisions from

experience.

Now, after elaborating on all three steps of the algorithm, let us clarify the intricacies

of step I, particularly relevant for the case with ambiguity.

The most straightforward approach is to use equation (9) with q reflecting the implicit

deeper structure of the problem. But this reduced-form approach can be extended by

constructing an explicit compound distribution.

Now the probability p is not a fixed constant, but a more complex object that is explic-

itly constructed. Thus, Bayesian formulation of the lottery with ambiguous probability

of success—focusing on how the data underlying the lottery draws are generated—can be

39Say, by pressing a computer key in the lab and observing the realizations.
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expressed in terms of an urn with unknown composition of differently-colored balls:

L(ι|p2)L(p2|p1) :=
Å
k∗

k

ãι Å
1− k∗

k

ã1−ι

× k!

k∗!(k − k∗)!
pk

∗

1 (1− p1)
k−k∗ , (11)

where two probability distributions, Bernoulli L(ι|p2) and Binomial L(p2|p1), represent,
respectively, the data-generating process for the lottery outcome on the basis of a drawn

ball from the given urn, and the data-generating process for how the composition of balls

in this urn arises to begin with; k is the total number of balls in the urn (treated as given);

k∗ is the number of balls with favorable colors;40 p1 is the “upstream” probability that the

ball put into the urn will have a favorable color; p2 := k∗/k is the “downstream” probability

of drawing from the urn a ball of favorable color that will determine the lottery’s final

outcome (similarly to p in a non-ambiguous case).

The Jeffreys prior for p1 is that same from equation (8), π(p1) ∝ p
−1/2
1 (1− p1)

−1/2.

Details about the ideal structure of the data-generating mechanism imply that the

probability of a favorable ball being in the urn equals some value q.41 However, in general

the true probability p1 may still differ from the deduced probability q, so we update the

initial prior above weighting available information with appropriate number of pseudo-

observations. This leads to the posterior distribution that, after integrating it with respect

to p2, gives the same expression for the mean as we saw in equation (10), E[p2|q] =

(α + nq)/(α + β + n).

The above perfectly Bayesian solution can be expressed in the following, more insight-

ful way.

Proposition 2 (Symmetric Source Treatment Under Ambiguity). The mean of the pos-

terior distribution of the probability of interest p2 can be equivalently computed in two

symmetric stages, one per data-generating mechanism:

E[p1|q] =
α + n1q

α + β + n1

E[p2|E[p1|q]] =
α + n2E[p1|q]
α + β + n2

.

The value of n := n1 ≡ n2, which we equalize for parsimony and easier identification

requirements, in this formulation corresponds to n +
√
n(α + β + n) from the one-stage

formulation.

The results in two formulations are numerically equal up to rescaling of n. However,

the symmetric two-stage formulation explicitly associates confidence measure n with a

data-generating (sub) mechanism, rather than with the lowest-level structural statistic

40For example, it is the number of red and black balls if drawing either of them will imply the successful

outcome x(1).
41For example, by the principle of indifference, it is 2⁄8 if red or black ball is sought out of 8 balls

including red, black and 6 other colors.
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q in the more standard reduced-form one-stage approach.42 This aligns better with the

structure of the problem under ambiguity, and allows a more intuitive interpretation.

Now, both the process of putting colored balls into the urn as well as the subsequent

process of drawing one of them from it to define the lottery outcome have their own

degrees of confidence, since both may in principle be corrupted and may legitimately lack

full confidence.43

Lastly, let us summarize the derivations so far by providing the general recipe when

more than one source of data is used.

Proposition 3 (Belief Updating, Discrete Case). Learning new information related to

parameter of interest p (p2 in the ambiguous case) and updating the corresponding beliefs

is implemented as follows:

E[p|q] =
α +

∑
s∈{a,d,e} nsqs

α + β +
∑

s∈{a,d,e} ns

, (12)

where qs and ns for s ∈ {a, d, e} are, respectively, the communicated information and cor-

responding number of (pseudo-) observations in ambiguity-, description- and experience-

based scenarios (adopting the convention that ns := 0 whenever qs is unavailable).

Therefore, each source is associated with its own degree of confidence, and the relevant

sufficient statistics can be added with appropriate confidence weights.

Remark 1: One may notice that effective probability weighting function derived here

(as plotted in Figure 4) differs somewhat from the common views in the existing literature

(following Kahneman and Tversky, 1979, 1992; Camerer and Ho, 1994; for an illustration,

see Figure 1). Appendix §C shows how a probability weighting function exhibiting a more

conventional inverse-S-shaped pattern can be obtained from a mixture of prior distribu-

tions that combines the Jeffreys prior with the so-called Haldane prior B(0, 0). The latter
implies a uniform distribution for the logarithm of the odds ratio, ln(p/(1− p)).

Remark 2: Our approach easily generalizes to the case of non-binary lotteries: the

Bernoulli, Beta and Binomial distributions above are just replaced with, respectively, the

categorical (generalized Bernoulli), Dirichlet and Multinomial distributions. Moreover,

42The latter, two-stage lottery construction with probability weightings applied at each stage is some-

what close to the approach of Segal (1987, 1990). However, we dispense with the rank-dependent utility

assumption, and do not rely on transformations into certainty equivalents.
43Note that our approach is general enough to treat ambiguous and fixed probabilities in a “continuous”,

nested way: e.g., when the composition of the urn is fixed and the respective probability of success (i.e.,

some constant value k∗
/k) is announced, n1 goes to infinity and the scenario naturally turns into that

with a described probability. Additionally, notice that the two-stage formulation with symmetric recursive

processing of information aligns better with the current understanding of the architecture of biological

and artificial neural networks, while the one-stage reduced formulation is closer to canonical hierarchical

Bayesian models.
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a case with continuous random variables is also amenable, see the next subsection that

instead of lotteries deals with stock prices.

Recap: To summarize, we considered decision-making in a stochastic environment that

regularly offers fresh lotteries driven by parameters which are potentially unknown. In

this setting, decisions must be made in real time, simultaneously with online learning of

the relevant parameters; while such learning process itself can not rely solely on observed

data but must allow for unseen contingencies in order to account for small samples and

infrequent events. In the context of Bernoulli lottery-generating model, the processing

of new information and updating of success probability is handled very naturally, and

the undersampling-motivated usage of invariant ignorance prior distributions reshapes

the lottery success probabilities’ posterior Beta distributions in a way that resembles the

probability distortions from section §2.1.

3.3 Assets in financial markets

As to the case with continuous distributions, we can get a sense of what would happen

by taking the Bernoulli distribution from section §3.2 to the limit. According to the

classical de Moivre–Laplace theorem, as n grows larger, the distribution of the number of

successes in the Bernoulli trials nx will converge to the Normal distribution with mean

np and variance np(1 − p). Take, without loss of generality, p = q > 1/2. By the earlier

derivations, the posterior mean of p would be biased toward 1/2, which unambiguously

increases the corresponding Normal distribution’s variance (due to the latter’s concavity

in p).44

Thus, we now focus on a non-ergodic environment with continuous, unbounded dis-

tributions.45 In such a case, even a large number of random variables’ realizations would

not allow perfect learning of the forever evolving true parameters, and the prior could not

possibly become dominated by the sample observations.

Consider stock price returns whose logarithms rt are Normally distributed with mean

µ and variance σ2. The corresponding Gaussian probability density function defines the

44Provided we ignore the effect of learning from different trials: say, by treating each partition of the

probability space (every cell of the domain) as a genuinely new lottery.
45In terms of lotteries from the previous section §3.2, the non-ergodicity corresponds to running dif-

ferent, non-repeated lottery trials. Also, while the case with lotteries could be criticized for treating

probabilities and payoffs differently by taking the payoff values as certain, here with continuous probabil-

ity distributions this is irrelevant as we can take, without loss of generality, either the domain (payoffs)

or the range (probabilities) of a distribution function as a preset gauge.
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likelihood of possible returns:46

L(rt|µ, σ2) :=
1√
2πσ2

exp

Å
− 1

2σ2
(rt − µ)2

ã
. (13)

We follow the same basic algorithm given in §3.2, the only substantial difference is

that now external information is either “recycled” from the previous stage of parameter

evolution or sampled from the current stage. Note that we explain below the details of

each step in a non-consecutive but easier to understand order.

I. In this section, the parameters themselves are (unobservable) random variables. To

obtain the corresponding ignorance prior that is invariant under reparameterization, the

Jeffreys method yields:47

π(σ2|·) ∝

√
EL

ñÅ
∂

∂σ2
lnL(rt|µ, σ2)

ã2ô
=

1

σ2
, (14)

π(µ|·) ∝

√
EL

ñÅ
∂

∂µ
lnL(rt|µ, σ2)

ã2
ô
=

1

σ
. (15)

Thus, the prior corresponding to the mean is found to be conditional on the variance.

Indeed, we can always write π(µ, σ2) = π(µ|σ2)π(σ2).

Equations (14) and (15) are consistent with several different probability distributions,

but it will prove convenient to proceed in the following way. Assuming that the vari-

ance σ2 follows an Inverse-Gamma distribution48 and the mean µ is Normally distributed

(conditionally on the variance), equations (14) and (15) can be viewed as the limiting

cases of the same two probability distributions. That is, an Inverse-Gamma IG(α0, β0)

with parameters α0 = 0 and β0 = 0 as well as a (conditional) Gaussian N (ℓ0, σ
2/λ0)

with parameters ℓ0 ∈ R (say, ℓ0 = 0) and λ0 → 0. Hence, parameterization invariance

implies that a transformed scale parameter lnσ2 has a uniform distribution on the real

line, leaving the scale to be multiplication-invariant, whereas a location parameter µ has

a (conditionally) uniform distribution on the real line, being addition-invariant.

Thus, we obtained the Normal–Inverse-Gamma–Normal conjugate system. Intuitively,

the Normal prior distribution’s parameter λ0 → 0 and Inverse-Gamma’s parameter α0 = 0

can be interpreted as 0 pseudo-observations of the Normal realizations of rt (hence these

priors are improper).

46I.e., in equation (6) set J(χt+1, zt) := v(C(χt, zt−1)) + βV (χt+1, zt), where v(·) is a consumption-

value function and V (·) is a state-value function from the Bellman equation corresponding to the problem;

χt+1 := rt+1; zt ∈ R2; θt := {µ, σ2}. Note that zt is substituted out in equilibrium and does not enter

our empirical exercises, see Lucas (1978).
47In our derivations, mean and variance parameters are treated separably, but treating them as a single

vector does not make a difference here. In general, however, this seems like another instance of flexible

choices. Substantial disagreement is ongoing in the existing Bayesian literature about how to deal with

invariance for location-scale parameters in the exponential-family distributions; relevant sources include

DeGroot (1970), Kass and Wassermann (1996), Minka (2001), Gelman et al. (2004), Murphy (2012).
48Here, IG(h, s), with shape h and inverse scale s, is parameterized as f(x|h, s) := sh

Γ(h)x
−h−1 exp

(
− s

x

)
.
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By the maximum entropy approach, the Inverse-Gamma distribution maximizes en-

tropy on the (0,∞) interval subject to constraints on the arithmetic mean and on the

logarithm of the geometric mean of the random variable 1/σ2. The Normal distribution

maximizes entropy on the (−∞,∞) interval subject to constraints on the arithmetic mean

and on the variance of the random variable µ. Thus, in general the earlier given values

of α0 and β0 also may be interpreted as specific restrictions on the mean (but not point)

values of σ2, whereas the values of ℓ0 and λ0 as restrictions on the first and the second

(central) moments of µ in entropy maximizations.49

III.A. In order to specify how the initial prior can be enriched with any external

information, it is helpful to begin with an ergodic environment in which parameters σ2

and µ are realized at time τ = 0 (in the subsequent treatment it will be convenient to

have an additional time-counting variable) and remain constant thereafter. In such a

situation, whenever new observations on returns rτ are realized, the standard mechanism

of Bayesian updating stipulates the procedure below.

Lemma 1 (Belief Updating, Continuous Case with Constant Parameters). Learning new

information related to parameters of interest µ and σ2 and updating the corresponding

beliefs is implemented as follows:

ατ := α0 +
1

2
τ, (16)

βτ := β0 +
1

2

Å
λ0τ

λ0 + τ
(r̄τ − ℓ0)

2 + τ s̄2τ

ã
, (17)

ℓτ :=
1

λ0 + τ
(λ0ℓ0 + τ r̄τ ), (18)

λτ := λ0 + τ, (19)

where the empirical mean is defined as r̄τ := (1/τ)
∑τ

j=1 rj and empirical variance as

s̄2τ := (1/τ)
∑τ

j=1(rj − r̄τ )
2.50

Then, the (marginal) posterior distributions for the variance and mean are, respec-

tively,

π(σ2|ατ , βτ ) =
βατ
τ

Γ(ατ )
(σ2)−ατ−1 exp

Å
−βτ
σ2

ã
, (20)

π(µ|ℓτ , λτ , ατ , βτ ) =
Γ(2ατ+1

2
)

Γ(2ατ

2
)
√
2πβτ/λτ

Å
1 +

(µ− ℓτ )
2

2βτ/λτ

ã− 2ατ+1
2

, (21)

49The two constraints are Eπ[1/σ2] ≡ α0β0 and Eπ[ln(1/σ2)] ≡ ψ(α0) + lnβ0 for the Inverse-Gamma

distribution, as well as Eπ[µ] ≡ ℓ0 and Eπ[(µ − ℓ0)
2] ≡ σ2/λ0 for the Normal distribution. Seeming like

another instance of flexible choices, the restrictions are ∞ variance σ2 and a free (unrestricted) mean µ,

respectively.
50Subsequently, recursive formulas for calculating empirical mean and variance will be required, these

are r̄τ := (1/τ)((τ − 1)r̄τ−1 + rτ ) and s̄
2
τ := (1/τ)((τ − 1)s̄2τ−1 + (rτ − r̄τ−1)(rτ − r̄τ )).
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being, due to conjugacy, of the Inverse Gamma and Student’s t form. The latter distri-

bution is the non-standardized Student’s t density51 with degrees of freedom 2ατ , location

ℓτ and scale βτ/(ατλτ ); in short, T2ατ (ℓτ , βτ/(ατλτ )).

Note how the Student’s t probability density (21) is being born from the Normal

density that was conditional on the variance.

In turn, for the next period’s return we have the following.

Lemma 2 (Overweighting Low Probabilities and Underweighting High Probabilities,

Continuous Case with Constant Parameters). Conditionally on unknown but fixed param-

eters σ2 and µ, the posterior predictive distribution for next period’s return rτ+1 is

π(rτ+1|ℓτ , λτ , ατ , βτ ) =
Γ(2ατ+1

2
)

Γ(2ατ

2
)
√

2πβτ (1 + 1/λτ )

Å
1 +

(rτ+1 − ℓτ )
2

2βτ (1 + 1/λτ )

ã− 2ατ+1
2

, (22)

which is a Student’s t density parameterized as T2ατ (ℓτ , βτ (1 + 1/λτ )/ατ ). For finite ατ ,

its tails are heavier than the Gaussian tails of the data-generating process (13).

Therefore, in investor’s decision-making the uncertainty about parameter values am-

plifies the tail probabilities and the overall riskiness of the stock.52

II. and III.B. Now, turning to the setting we are primarily interested in, consider

a non-ergodic environment in which σ2 and µ are not constant but at any time may

change within R+ ×R. More formally, every period t with some probability p ∈ [0, 1] the

latent parameter evolution process {lnσ2
t , µt} ∈ R2 jumps from its previous period’s value

{lnσ2
t−1, µt−1} with a magnitude of change distributed independently and symmetrically

on R2, consequently our unknown parameters of interest {lnσ2, µ} are reinitialized as

{lnσ2, µ} := {lnσ2
t , µt} and the new regime k ∈ N starts. Otherwise, with probability

(1 − p) the process {lnσ2
t , µt} and the values {lnσ2, µ} are unchanged. For an ease of

exposition, assume that (i) probability p is non-stochastic and is common knowledge; and

that (ii) the time of change is known ex post but not ex ante. Such an evolution of the

underlying parameter values can be understood as changes in (latent) macro-financial

regimes. Effectively, this setting allows for an infinite number of regimes.53

Let us consider the dynamics of the system as physical time t passes. While staying

within the same regime k, the learning dynamics follow the recursive formulas (16)–(19).

As the time since the last parameter change τk increases, by equations (20) and (21), the

51Here, Td(l, s), with degrees of freedom d, location l and scale s, is parameterized as f(x|d, l, s) :=

Γ( d+1
2 )

Γ( d
2 )

√
dπs

(
1 + (x−l)2

ds

)− d+1
2

.
52These derivations, which pertain to our ergodic case, are standard in Bayesian analysis (for example,

see Murphy, 2012) and are provided in the interest of clarifying our chosen notation.
53The methods for inferring regimes and updating the probability of change are widely studied in

economics and finance (a recent contribution is Smith and Timmerman, 2021; extensive reviews can be

found in Ang and Timmermann, 2012, or Hamilton, 2016). We will just emphasize that identifying the

structural breaks is a challenging problem, especially when done in real time or under low-frequency

sampling.
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parameters eventually would be learned. By equation (22), the posterior Student’s t dis-

tribution of returns would converge to the true distribution from equation (13). However,

these eventual target distributions will not be achieved in finite time as long as probability

of regime change p is greater than 0: when at some physical time t the values {lnσ2
t , µt}

change, the learned information becomes obsolete.

After the regime change, the learning dynamics will restart. First, formulas (16)–(22)

will be re-initialized and the variable counting time since the latest parameter change will

set to τk+1 := τ ⋆ := 0 (the object τ ⋆ is just a constant).54 Since initially nothing will

be known about the new regime, the prior parameter values will be reset, too. For the

variance, the values will be set to α0 = β0 = 0, implying the logarithmic prior introduced

earlier. For the mean, they will be set to λ0 → 0, which implies infinite variance and

effectively no information about the location (in the same vein, ℓ0 remains unrestricted,

but this is of no effect given λ0 → 0).

Second, it is reasonable for an agent to incorporate some empirical information into

the above prior. Given that the latent parameter process evolves symmetrically around

its most recent position, we would update the initial prior with the sufficient statistics

that correspond to the latest available regime, that is, the current one. For the Normal

distribution, the sufficient statistic is vector [r̄τ,k+1; s̄
2
τ,k+1]. So, in updating equations (18)

and (17), empirical mean r̄τ,k+1 will be replaced with r̄τk, and empirical variance s̄2τ,k+1

will be replaced with s̄2τk from the current regime.

Furthermore, by the principle of indifference between sources of pseudo-observations,

similarly to n := 1 in section §3.2, setting τk+1 := τ ⋆ := 3 would put two sources of prior

information on equal footing, to the extent possible (3 is the minimum sample size re-

quired for our sufficient statistics to be acceptably informative about their corresponding

parameters55). Intuitively, such an approach can be interpreted as extending the existing

0 pseudo-observations from the initial prior with 3 pseudo-observations from the external

source, the latest regime.56 (However, note that, in general, smaller τ and related quanti-

ties such as α can be understood as lower confidence in this information, similarly to what

is the case with, e.g., na for the judged probability in lottery choice considered in section

§3.2. Also, it may be useful to realize that considerations of current and new regimes

here parallel the treatment of, respectively, decisions from experience and decisions under

conditions of ambiguity in §3.2.)

54Note that the vector of all times t thus has a one-to-one correspondence to a concatenation of τk’s

values within each regime as well as over all regimes.
55It can be shown that µ and σ2 from the current, indexed by τk, regime—i.e., the parameters which

empirical mean and empirical variance ultimately characterize—have well-defined and finite posterior

means as long as τk > 2: from equations (21) and (20), Eπ[µ|·] = r̄τk and Eπ[σ2|·] = (τk/(τk − 2))s̄2τk.

Hence, this is the minimum amount of empirical information needed to characterize µ and σ2 of vintage

τk. In turn, this same amount of information is then used to update the prior on µ and σ2 of vintage

τk+1.
56Inclusion of r̄τk and s̄2τk into calculations of r̄τ,k+1 and s̄2τ,k+1 can be done using recursive formulas

provided earlier.
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Thus, in the contingency of future regime change, the prior predictive57 distribution,

defined by equation (22) with the just described values for τk+1 as well as α3, β3, λ3 and

ℓ3, becomes a Student’s t with 3 degrees of freedom, T3(r̄τ , 4s̄
2
τ/3). (From the previous

sentence onwards, a generic τ is understood as the current regime’s τk.)

Allowing for both contingencies, we obtain the following result.

Proposition 4 (Overweighting Low Probabilities and Underweighting High Probabilities,

Continuous Case with Changing Parameters). The posterior predictive distribution for

next period’s return rτ+1 is a p-mixture of two Student’s t densities:

πM(rτ+1|ℓτ , λτ , ατ , βτ ; r̄τ , s̄
2
τ ) = (1− p)× π(rτ+1|ℓτ , λτ , ατ , βτ ) +

+ p× π(rτ+1|r̄τ , 3, 3/2, 3s̄2τ/2), (23)

where π(rτ+1|ℓτ , λτ , ατ , βτ ) is T2ατ (ℓτ , βτ (1 + 1/λτ )/ατ ) and π(rτ+1|r̄τ , 3, 3/2, 3s̄2τ/2) is

T3(r̄τ , 4s̄
2
τ/3). For finite ατ or p = 1, the mixture’s tails are heavier than the Gaussian

tails of the data-generating process (13).

Therefore, at the outset parameter uncertainty amplifies the underlying Gaussian tails.

As time passes but the system stays under the same macro-financial regime and param-

eters do not change, the tails of the first mixture component—and thus of the mixture

overall—gradually compress due to the progress in learning of the underlying parameters.

However, with p > 0, there is always a risk of regime change and renewed importance of

the relatively heavier tails of the second mixture component.

Finally, the agent is prepared to make an optimal investment decision based on his

current (as well as recycled from the past) sample data, and also, while staying in the

same regime, to collect more information and learn the underlying parameters ever more

accurately.

Recap: To summarize, we considered a stylized stochastic environment that exhibits

non-ergodicity due to the parameters that condition the probability distributions of inter-

est evolving randomly over time. Investors deal with parameter uncertainty using invariant

ignorance priors that explicitly allow for undersampled or even unobserved events, and

update such priors with available sample information. As a result, although the true

data-generating distribution is Normal (conditionally on stochastic mean and variance),

the inferred posterior distribution used for investment decisions has a Student’s t form

(sometimes its version with very heavy tails), which can help explain the asset pricing

puzzles and regularities from section §2.2.58

57Which in this situation would be a more precise term than posterior predictive.
58Moreover, sample and hypothetical data-generating (“population”) distributions permanently differ:

recognition of non-ergodicity immediately removes the restriction that sample statistics must converge

to or at least be informative about population statistics, which has direct implications for the posterior

mixture distribution of returns. Indeed, the posterior distribution πM (·) never converges to some uncon-
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4 Empirics

In this section we take our theoretical models to data.

4.1 Lotteries in laboratory experiments

Our intention is to test how accurately the model from §3.2 captures the behavior of

human subjects in typical laboratory experiments with binary lotteries.

As is standard in experimental economics, agent’s value function is assumed to have

a power form given by equation (2), and we allow for different curvatures in gain and

loss lotteries: i.e., parameter φ := φ+ if lottery payoff x ≥ 0, but φ := φ− if x < 0.

The (posterior mean) probability of lottery’s tail payoff xt, which is defined as the payoff

further in absolute value from the reference point 0 than the lottery’s sure payoff of the

same sign xs, is given by equation (12). Two above-mentioned equations allow to calculate

a model-implied certainty equivalent (CE) of the lottery, while experimental data at our

disposal provide an observed CE. The observed CE is postulated to reflect a model-

implied CE and an additive error term. Assuming that errors are Normally distributed,

the estimation is conducted by maximum likelihood.

Decisions from description: We start with experiments that inform human subjects

about the setup by announcing the lottery payoffs and probabilities.

The data set used is the same as in §2.1. As a benchmark for our model to target

in terms of CE fit, we take equations (1) and (2), parameterized differently for gains

and losses, and then replicate and re-estimate on pooled data the purely data-fitting

model formulated by the authors of the original data set. The value of the communicated

probability q is taken to be the probability that was announced to the subjects. Under

these circumstances, we can only identify the relative numbers of pseudo-observations

contained in the initial prior and obtained from the external source, forcing us to fix the

confidence in the external source value at n = nd := 1).

Full estimation results are summarized in Table 2. The first column presents the

benchmark CPT-based model. The second column presents our model, fixing the initial

prior’s parameters at the values stipulated by the Jeffreys method, that is α = β = 1/2,

which makes the probabilistic side of the decision problem fully determined by the theo-

retical considerations and lets only the value function’s parameters to be estimated. Our

proposed approach achieves a similar goodness-of-fit performance, in spite of using far less

parameters and, more importantly, being based on decision-theoretic rather than statis-

ditional population distribution L(rt) (for lack of the latter in a non-ergodic setting). It also does not

converge to the population distribution defined conditionally on the current regime parameters, L(rt|µ, σ),
or even to the sample distribution from the current regime, L̂(rt|µ, σ) (because of the overarching pres-

ence of the risk of regime change). Such restrictions and respective convergence are usually associated

with a strong (or näıve) form of “rational expectations”.
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Table 2: Estimation Results for Lottery
Decisions — Information from Description

Parameters CPT4 BJeffreys B
φ+ 0.95 0.88 0.90

(.015) (.007) (.007)

η+ 0.46
(.005)

ψ+ 0.93
(.013)

φ− 1.11 1.10 1.10
(.018) (.009) (.009)

η− 0.49
(.005)

ψ− 1.00
(.016)

α, β 0.50 0.30
(n/a) (.005)

nd 1.00 1.00
(n/a) (n/a)

R2 0.9067 0.9006 0.9075

Notes: The explained variable is observed certainty equivalents. The rows contain value function param-
eters φ+ and φ−; probability weighting function parameters η+, ψ+ and η−, ψ−; the initial prior density
parameters α and β; the confidence value nd; as well as the goodness-of-fit measure R2. The columns
present different model specifications: a cumulative prospect theory specification with 4 weighting func-
tion parameters; B(α + ndq, β + nd(1 − q)) model under Jeffreys prior; and B(α + ndq, β + nd(1 − q))
model under revealed prior (see text for a detailed description). The estimation is conducted on pooled
data by maximum likelihood accounting for individual- and payoff sign-specific error heteroscedasticity
proportional to lottery range. Standard errors (in parentheses) are computed using wild bootstrap with
200 replications. Number of observations is 17800. Data source on laboratory experiments is Bruhin et
al. (2010).

tical data-fitting grounds. We are not particularly interested in the nuisance parameters

φ+ and φ−.

Allowing parameters α and β (still assuming α = β) to adjust so as to maximize our

model’s fit to data, we can back out putative priors effectively used by the subjects. The

third column of Table 2 provides the estimation results for this “oracle” model: with

α̂ = β̂ = 0.30, the prior that is revealed to fit the subjects’ behavior best is fairly close to

the prescriptions of the Jeffreys method, the remaining free parameters barely change, and

the model’s fit improves only slightly (but this time outperforming the CPT benchmark).

We can compare empirical and model-implied CEs visually by plotting the CE-to-

payoffs ratios, appropriately standardized, which is done in Figure 5. Both the benchmark

and our revealed-prior models perform very similarly, capturing the characteristic pattern

of differences in risk aversion and risk seeking behavior: risk seeking (points above the

diagonal that corresponds to risk neutrality) at low probabilities and risk aversion (points

below the diagonal) at high probabilities in gain lotteries, but risk aversion (above) at
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Figure 5: Ratios of CEs to lottery payoffs, standardized, median values (vertical axis) vs.

declared true tail probabilities (horizontal axis), where values of CEs are

either measured empirically (solid squares), implied by the CPT model (triangles

pointing down) or implied by the revealed-prior model (triangles pointing up).

Lotteries with gains and with losses, information obtained from description.

low probabilities and risk seeking (below) at high probabilities in loss lotteries. The

estimated posterior mean and probability weighting functions, with empirical weighting

function fitted pointwisely for respective quantiles, capture the same pattern, as shown

in Figure 6.

Lastly, we can place results on the same interpretable scale: if the number of pseudo-

observations in the confidence measure for description-based communication is taken to be

23.24 (basing on Table 3, which will be presented later), the prior revealed to fit subjects

in lottery experiment best amounts to 13.94 pseudo-observations, while its counterpart is

1.00 in the Jeffreys prior.

Decisions from experience: Now we consider experiments that communicate the lot-

tery payoffs and probabilities by allowing human subjects to sample the data-generating

mechanism by clicking on the computer button.

The data set is from Abdellaoui et al. (2011b), who conducted laboratory experi-

ments eliciting certainty equivalents for binary lotteries in both description-based and

experience-based scenarios. The study was based in Paris, its records on gain and loss

(but not mixed) lotteries comprises 2928 observations in total.

The estimation approach is the same as before. But this time we are able to identify

the absolute numbers of (pseudo-) observations contained in the initial prior and obtained

from each of the external source—i.e., either from the declaration or from sampling—which
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Figure 6: Posterior mean and probability weighting functions (vertical axis) vs.

declared true tail probabilities (horizontal axis), with posterior mean

function produced by the revealed-prior model from Table 2 (solid) and

with probability weighting functions produced by the CPT model from

Table 2 (dashes) as well as by agnostic data fitting (solid squares).

Lotteries with gains and with losses, information obtained from description.

allows us to quantify and scale the confidence measures nd and ne directly.
59

Estimation results are presented in Table 3. The left panel conducts the same exercise

as that in Table 2: despite some numerical differences in parameter estimates, the quali-

tative picture is unchanged. The middle panel introduces the results for sampling-based

lottery choices, with n = ne variable capturing the number of observations sampled by

a given subject: the specification with Jeffreys prior fits the data reasonably well but

has room for improvement in comparison to the CPT benchmark, while the oracle model

allowing for initial prior parameters α and β (assuming α = β) to adjust outperforms

both specifications (to show the role of variation in the number of sampled draws, in the

specification with ne normalized to 1 we try ignoring this variation, which moderately

damages the fit). The right panel offers the encompassing specification that imposes Jef-

freys prior while leaving both confidence measures nd and ne unrestricted:60 as before,

the Jeffreys prior specification only faintly underperforms the CPT alternative, but both

are beaten by the formulation with optimized initial prior parameters α and β that is

revealed to fit the participants behavior best (again, the specification with ne := 1 shows

a modest deterioration in the goodness of fit).

59In our data, the number of sampled observations ne has the mean of 19.57 and the standard deviation

of 8.50.
60Values of nd and ne are unrestricted for their corresponding data sub-samples, and are set to 0

otherwise.
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Table 3: Estimation Results for Lottery Decisions — Information from Description and from Experience

Parameters Description Experience Description & Experience

CPT4 BJeffreys B CPT4 BJeffreys B B CPT4 BJeffreys B B

φ+ 0.71 0.67 0.74 0.68 0.76 0.69 0.67 0.71 0.76 0.71 0.70

(.023) (.012) (.016) (.026) (.009) (.016) (.014) (.019) (.012) (.011) (.011)

η+ 0.53 0.50 0.50

(.026) (.025) (.018)

ψ+ 0.94 0.90 0.90

(.040) (.047) (.033)

φ− 0.92 0.76 0.81 1.04 1.06 0.96 0.96 0.99 0.91 0.88 0.88

(.028) (.013) (.014) (.040) (.009) (.018) (.018) (.022) (.013) (.011) (.011)

η− 0.71 0.71 0.70

(.020) (.025) (.016)

ψ− 0.82 0.89 0.83

(.034) (.049) (.026)

α,β 0.50 0.17 0.50 3.77 0.22 0.50 3.95 0.23

(n/a) (.011) (n/a) (.249) (.014) (n/a) (.246) (.013)

nd 1.00 1.00 3.60 23.24 1.31

(n/a) (n/a) (.262) (2.005) (.107)

ne data data 1.00 data data 1.00

(n/a) (n/a)

R2 0.8653 0.8300 0.8632 0.8080 0.7758 0.8370 0.8324 0.8326 0.8122 0.8473 0.8447

Obs. 1464 1464 1464 1464 1464 1464 1464 2928 2928 2928 2928

Notes: The explained variable is observed certainty equivalents. The rows contain value function parameters φ+ and φ−; probability weighting function parameters

η+, ψ+ and η−, ψ−; the initial prior density parameters α and β; the numbers of (pseudo-) observations in the relevant experiments nd and ne; as well as the

goodness-of-fit measure R2 and the number of observations in the data subset (see text for a detailed description). The columns are split into three panels

depending on information source (description, experience or both) and present different model specifications: a cumulative prospect theory specification with 4

weighting function parameters; B(α+nq, β+n(1− q)) model under Jeffreys prior; and B(α+nq, β+n(1− q)) model under revealed prior (see text for a detailed

description). The estimation is conducted on pooled data by maximum likelihood accounting for individual- and payoff sign-specific error heteroscedasticity

proportional to lottery range. Standard errors (in parentheses) are computed using wild bootstrap with 200 replications. Data source on laboratory experiments

is Abdellaoui et al. (2011b).
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Crucially, in this last panel our proposed model with unrestricted α, β, nd and ne

effectively (i) uses the variation in the number of sampled draws to scale initial prior’s

α and β in terms of the number of observations ne, and then (ii) uses such α and β for

estimating the confidence measure nd scaled in terms of the absolute number of pseudo-

observations. It suggests several points of note.

First, the prior parameters scaled in terms of the number of (pseudo-) observations

are α̂ = β̂ = 3.95, which seems small relatively to the average number of sampled draws

(α̂+ β̂ = 7.90 < 19.57 = n̄e), but it is not negligible — this exceeds the Jeffreys’ prescrip-

tion of α+β = 1.00, and implies that the prior dominates in equation (12) even after the

first several (pseudo-) observations have been communicated from the external source.

Second, the estimated confidence in the declared lottery details parameter n̂d = 23.24

is comparable (and statistically indistinguishable) in magnitude to the confidence obtained

via sampling the lottery mechanism as reflected in the average number of draws n̄e.

Third, judging by the difference in the goodness of fit between the best-performing

unrestricted specification and its alternative that includes the same number of free param-

eters but ignores the number of sampled draws and keeps ne at 1, we see that accounting

for the variation in sampled draws did improve the explanatory power of the model — al-

though R2 decreases only modestly from 0.8473 to 0.8447, Vuong (1989) likelihood-based

test strongly favors the former specification producing the test statistic of 2.77 with the

p-value below 0.01 level.

Placing things on the same scale, the number of pseudo-observations in the prior

revealed to fit subjects in lottery experiments best is 7.90, while in the Jeffreys prior it

is 1.00, and, for comparison, it is 23.24 in the confidence measure for description-based

communication.

Appendix §A provides empirical and model-implied CEs as well as posterior mean and

probability weighting functions illustrating the preceding results.

Decisions under ambiguity: Lastly, we turn to experiments that inform their subjects

about the possible events that a given data-generating mechanism operates with, and

which lottery payoffs are associated with different combinations of these events, but do

not reveal the exact subset of events the lottery will eventually be drawn from.

The data set is due to Abdellaoui et al. (2011a), whose laboratory experiments elicited

certainty equivalents for binary lotteries in which probabilities were either communicated

by description or left ambiguous. Their mechanism operated with balls of 8 different

colors and urns with either known or unknown composition of balls. The experiments

were conducted in France, they considered only lotteries for gains, and their records

comprise 2112 observations in total.

The estimation approach is similar to that used for decisions from experience, except

that now confidence measures nd and na can only be scaled in relative terms. In the

ambiguous case, the communicated (“judged”) value of q is associated with the event
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partitioning that corresponds to characteristics of the lottery under consideration (e.g.,

to 1⁄8 for a bet on drawing a red-colored ball).

Estimation results are available in Table 4. We see that although in all cases specifica-

tions under Jeffreys prior fare competitively, they do underperform the CPT benchmark;

but the models with initial prior parameters α and β allowed to change so as to fit the

data perform as well as the benchmark.

The most interesting findings are on the right panel with a prior revealed to fit the

data best. First, we see that the confidence in ambiguous information q about lottery

probability parameter p that is contained merely in the primitives of the mechanism

itself, relatively to information communicated by description, is 0.42 to 1. Assuming the

confidence measure for decisions from description is the same 23.24 pseudo-observations

that we estimated earlier in Table 3, our relative measure above amounts to 23.24×0.42 =

9.76 pseudo-observations. This is less than the corresponding value for decisions from

description, though it exceeds the weight of information contained in the revealed prior:

9.76 > 3.25 = 23.24× (0.07 + 0.07).

Furthermore, the two rightmost columns of Table 4, which, following Proposition

2, present the results of the two-stage symmetric treatment of data-generating (sub)

mechanisms underlying lotteries under ambiguity, allow a more intuitive interpretation

of the confidence degrees demonstrated in experiments under ambiguity: the per-stage

value n̂a = 0.91 is now much closer to the value of 1 corresponding to information from

description, nd, and translates into 23.24×0.91 = 21.15 pseudo-observations. Importantly,

this closeness between the two-stage na and nd comes together with the fact that revealed

prior parameters in this specification are the same as in the purely description-based

lottery choices: α̂ = β̂ = 0.07 both here and in the left panel. In this sense, there is no

sizeable misalignment between ambiguity- and description-based decision scenarios.

Placing things on the same scale again, the number of pseudo-observations in the prior

revealed to fit subjects in lottery experiments best is 3.25, while in the Jeffreys prior it

is 1.00, and, for comparison, it is 23.24 (by assumption) in the confidence measure for

description-based communication.

Appendix §B provides empirical and model-implied CEs as well as posterior mean and

probability weighting functions illustrating the preceding results.

4.2 Assets in financial markets

Now we are going to test the performance of the model from §3.3 in capturing the decisions

of investors in financial markets and the resulting asset prices.
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Table 4: Estimation Results for Lottery Decisions — Information from Description and under Ambiguity

Parameters Description Ambiguity Description & Ambiguity

CPT2 BJeffreys B CPT2 BJeffreys B CPT2 BJeffreys B B2
Jeffreys B2

φ+ 1.10 1.13 1.11 1.14 1.05 1.11 1.15 1.15 1.15 1.15 1.15

(.035) (.021) (.017) (.044) (.012) (.016) (.032) (.014) (.012) (.012) (.012)

η+ 0.83 0.66 0.73

(.035) (.027) (.021)

ψ+ 1.01 0.96 1.00

(.036) (.046) (.033)

α,β 0.50 0.07 0.50 0.19 0.50 0.07 0.50 0.07

(n/a) (.017) (n/a) (.020) (n/a) (.020) (n/a) (.019)

nd 1.00 1.00 1.00 1.00 1.00 1.00

(n/a) (n/a) (n/a) (n/a) (n/a) (n/a)

na 1.00 1.00 2.63 0.42 5.72 0.91

(n/a) (n/a) (.268) (.134) (.487) (.262)

R2 0.7396 0.6872 0.7397 0.5612 0.5419 0.5616 0.6424 0.6223 0.6444 0.6223 0.6444

Obs. 858 858 858 1254 1254 1254 2112 2112 2112 2112 2112

Notes: The explained variable is observed certainty equivalents. The rows contain value function parameters φ+; probability weighting function parameters

η+, ψ+; the initial prior density parameters α and β; the numbers of (pseudo-) observations in the relevant experiments nd and na; as well as the goodness-

of-fit measure R2 and the number of observations in the data subset (see text for a detailed description). The columns are split into three panels depending

on information source (description, ambiguity or both) and present different model specifications: a cumulative prospect theory specification with 2 weighting

function parameters; B(α+nq, β+n(1−q)) model under Jeffreys prior; and B(α+nq, β+n(1−q)) model under revealed prior; as well as the last two models split

into two stages for the ambiguous case in the right panel (see text for a detailed description). The estimation is conducted on pooled data by maximum likelihood

accounting for individual-specific error heteroscedasticity proportional to lottery range. Standard errors (in parentheses) are computed using wild bootstrap with

200 replications. Data source on laboratory experiments is Abdellaoui et al. (2011a).
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Our testing approach is analogous to that of section §2.2: the candidate probability

density of stock returns πM(r) from equation (23), together with an assumption about

the probability of regime change p, CRRA coefficient γ and the time discount rate β,

are the models’ only inputs, while the levels and volatility of equity premium and risk-

free rate, as well as the key statistical moments of consumption and dividend growth are

reverse-engineered from returns’ distribution using equations (3)–(5) under the general

equilibrium structure of Lucas (1978).61 The target of this test is for the model-implied

quantities to match their empirical counterparts.62 Recall that this requires a high equity

premium, low risk-free rate, and high volatility of stock returns relative to that of dividend

growth.

The data set used is the same as in §2.2. The empirical approach is that of calibration

rather than estimation.

Our choices of γ and β are similar to those used earlier. The choice of the probability

of regime change p is more involved.

Regime changes: We calibrate the regime change probability p basing on statistical

properties of the time series of stock returns employing formal changepoint detection al-

gorithms. However, in order to identify higher than quarterly-frequency changes as well

as alleviate difficulties posed by short samples, for this particular task (and in contrast to

the actual asset pricing application) we use daily returns data; moreover, since detection

results are sensitive to test procedure settings, we run several different such procedures

(considering only model-free approaches).63 Thus, Table 5 summarizes the results for

(i) a parametric Gaussian mean-variance based approach in a frequentist spirit due to

Killick et al. (2012), (ii) a similar parametric approach but in Bayesian tradition sug-

gested by Adams and MacKay (2007), and (iii) a non-parametric approach relying on

Cramer–von-Mises test statistic proposed in Ross and Adams (2012). Evidently, different

procedures produce very disparate results, even the number of detected regime changes

varies dramatically. Appendix §D reports on findings of some straightforward statisti-

cal associations between regime changes and lags/leads of daily/monthly/quarterly real

GDP growth, GDP gap, unemployment rate, NBER recessions indicator, inflation rate,

federal funds rate, market returns and volatility variables. Guided by two extremes of the

quarterly-frequency results in Table 5, we consider two options: p = 1, implying a regime

change every period (a quarter, in our application); and p = 0.2, implying an expected

61That is, we solve numerically for the distribution of consumption (and dividend) growth that is

consistent with above equations as well as with the C ≡ D restriction (and satisfies the unimodality

requirement).
62Strictly speaking, the properties of the distribution of consumption (dividend) growth, which is

implied by the model and has to be consistent with the posterior distribution of returns considered, do

not have to closely match the empirical moments of the realized consumption growth. But they should

be within the range of sensibility for the model to be trustworthy.
63The informativeness of accounting for higher-frequency information has recently been shown in Ai

and Bansal (2018), Schorfheide et al. (2018), Farmer et al. (2023), Borup et al. (2024).
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Table 5: Detection results for regime changes

P-F P-B NP Observations

Daily 52 2269 145 18474

Monthly 44 613 123 873

Quarterly 43 271 93 291

Notes: The input data are log market returns. The rows present the number of detected changepoints

for different frequencies, with the daily frequency results aggregated to monthly and monthly aggregated

to quarterly. The columns contain results of three different model-free changepoint detection proce-

dures: parametric frequentist method (P-F), parametric Bayesian method (P-B) and non-parametric

method (NP); the last column shows the number of observations. The data sample is U.S. 1947:M4:D1–

2019:M12:D31, at a daily frequency (see Appendix §G for a description of data sources).

regime duration of 5 periods (quarters).

Model performance: Full calibration results are summarized in Table 6. The top

row of the Table provides the empirical moments that our model is targeting.64 Starting

with the updated Jeffreys prior developed in §3.3, we calculate the model’s output un-

der condition that the probability of regime change p is either 1.0 or 0.2; see the rows

corresponding to “Model, T2α and T3” in Table 6 with column p containing 1.0 or 0.2,

respectively. While in the latter case the model clearly underperforms, in the former case

of p = 1.0 it is able to hit the target: for γ between 4 and 5, the equity risk premium

is of the order of 6%–8%, the risk-free rate is no more than 1%. Additionally, the mean

and standard deviation of consumption (and dividend) growth are at low and medium

single-digit values, respectively, both of which look plausible. Also note that dividend

growth volatility is 4–5 times smaller than returns volatility in this case, which replicates

the “excess” equity volatility—or, given the logic of our exercise, “insufficient” dividend

volatility—relationship observed in the data. In particular, setting γ = 4.4 with p = 1.0

yields Eπ[rf ] = 0.0064, Eπ[r− rf ] = 0.0677,
√

Vπ[r] = 0.3124, Eπ[∆c] = Eπ[∆d] = 0.0146

and
√
Vπ[∆c] =

√
Vπ[∆d] = 0.0733. Therefore, our model’s investors are in agreement

with the observed market values on such tradable instruments as levels of equity premium

and risk-free rate or relative magnitudes of return and dividend volatilities.65

64Because we work under assumption of a non-ergodic environment in general, each empirical moment

used (as given in the top row of Table 6) should be interpreted not as an estimate of a theoretical

moment (e.g., mean value) and not even as a sample moment (a sample mean), but as a time average

of several sample moments (an average of sample means) that investors encountered over the historical

period considered. The question is whether, given such a history of macro-financial statistics, investors’

behavior as reflected in market prices was, on average, consistent with the proposed model.
65The mean consumption (dividend) growth obtained in our calibration is 1.46%, which is not too

far from empirical values of 1.29% (2.77%), adding plausibility. The corresponding standard deviation

is 7.33%, which is naturally larger than 1.54% (4.13%) observed in the sample, but it is comparable

to alternative results. Specifically, it is lower than the 17% standard deviation of welfare equivalent

consumption growth in Weitzman (2007); it falls in between the 4.24% and 14.84% standard deviations
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Table 6: Calibration Results for Investment Decisions — Model

π(r) p γ Eπ[rf ]
√

Vπ[rf ] Eπ[r − rf ]
√

Vπ[r] Eπ[∆c]
√

Vπ[∆c] Eπ[∆d]
√

Vπ[∆d]

Empirical, π̂ n/a n/a 0.0066 0.0131 0.0674 0.1628 0.0129 0.0154 0.0277 0.0413

Model, T2α and T3 1.0 1 0.0286 n/a 0.0470 0.3124 0.0656 0.3124 0.0656 0.3124

Model, T2α and T3 1.0 2 0.0218 n/a 0.0526 0.3124 0.0322 0.1588 0.0322 0.1588

Model, T2α and T3 1.0 3 0.0176 n/a 0.0566 0.3124 0.0214 0.1069 0.0214 0.1069

Model, T2α and T3 1.0 4 0.0112 n/a 0.0629 0.3124 0.0160 0.0805 0.0160 0.0805

Model, T2α and T3 1.0 5 -0.0077 n/a 0.0818 0.3124 0.0128 0.0645 0.0128 0.0645

Model, T2α and T3 0.2 1 0.0490 n/a 0.0253 0.2256 0.0642 0.2256 0.0642 0.2256

Model, T2α and T3 0.2 2 0.0476 n/a 0.0265 0.2256 0.0320 0.1141 0.0320 0.1141

Model, T2α and T3 0.2 3 0.0467 n/a 0.0273 0.2256 0.0213 0.0764 0.0213 0.0764

Model, T2α and T3 0.2 4 0.0454 n/a 0.0286 0.2256 0.0160 0.0574 0.0160 0.0574

Model, T2α and T3 0.2 5 0.0416 n/a 0.0324 0.2256 0.0128 0.0458 0.0128 0.0458

Model, T2α and T2 0.2 1 0.0462 n/a 0.0321 0.2966 0.0682 0.2966 0.0682 0.2966

Model, T2α and T2 0.2 2 0.0353 n/a 0.0406 0.2966 0.0329 0.1508 0.0329 0.1508

Model, T2α and T2 0.2 3 0.0268 n/a 0.0484 0.2966 0.0217 0.0989 0.0217 0.0989

Model, T2α and T2 0.2 4 0.0134 n/a 0.0615 0.2966 0.0162 0.0761 0.0162 0.0761

Model, T2α and T2 0.2 5 -0.0259 n/a 0.1007 0.2966 0.0129 0.0617 0.0129 0.0617

Notes : The columns present the probability density of returns with the probability of regime change; the coefficient

of relative risk aversion; the log risk-free and excess log market returns, the per capita consumption growth (i.e.,

temporal difference in the log of) as well as the dividend growth (difference in the log of) with their statistical

moments. The “Empirical” row: the data sample is U.S. 1947:Q2–2019:Q4, at a quarterly frequency (see Appendix

§G for a description of data sources). The “Model” rows: β = 0.99 per annum; the CRRA utility with a given γ; and

a specified probability density of returns π(r), which here is a (1 − p, p)–mixture of either T2αt(ℓt, βt(1 + 1/λt)/αt)

and T3(r̄t, 4s̄
2
t/3) or T2αt(ℓt, βt(1 + 1/λt)/αt) and T2(r̄t, 3s̄

2
t/2) (see text for a detailed description). Model inputs are

p and hypothetical πM(r) as well as γ and β; the rest of the columns are model outputs. The economic variables are

measured in real terms, and measurements are converted into annualized values.
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Figure 7: Empirical (solid) vs. hypothetical data-generating (dashed) probability densities

(parameterizations used are N (µ̂, σ̂2) with µ̂ = 0.0185 and σ̂2 = 0.0066 vs.

T3(r̄t, 4s̄2t /3) with r̄t = 0.0185 and s̄2t = 0.0066 corresponding to πM (r|·)
from equation (23) with p = 1.0).

Importantly, although the mean level of the stock market’s return effectively, via the

density πM(r), was one of the exogenous data inputs to the model, the ultimate split

within this given level into the layer of the risk-free return and a risk premium on top is

the endogenous result dictated by the theoretical model. Moreover, the consumption and

dividend growth statistics were in no way among the data inputs to the model, and they

are entirely model-dictated.

The observed empirical probability density function π̂(r) and the calibrated hypo-

thetical data-generating probability density πM(r) are plotted in Figure 7. The result is

somewhat different from what we saw earlier in Figure 2: even though there is more prob-

ability mass in the central area of the distribution πM(r) than in the distribution πCPT (r),

the remaining probability mass is allocated disproportionately more toward the far tails

in the former distribution than in the latter one due to the role of heavy-tailed T3(r) in

πM(r). Still, the hypothetical “population” distribution “spreads out” in comparison to

the observed sample, which is consistent with the pattern of probability weighting from

section §2 (Figure 1).66

Additionally, in order to verify the sensitivity of our results, we consider an alternative

implementation of the initial prior update. Specifically, when updating the prior with the

sufficient statistics from the current regime, we will set τ ⋆ := 2 instead of 3 that was used

of, respectively, consumption and dividend growth over 600,000 years of simulated data featuring rare

booms and disasters in Tsai and Wachter (2016); it is also consistent with the finding in Malloy et al.

(2009) that consumption growth of stockholders exhibits a sensitivity of factor about 3 to 4 relatively to

aggregate consumption growth.
66The critical role of (negative) tail risks in a related context is advocated by Kozlowski et al. (2019).

The importance of milder downside risks in argued in Beason and Scherindorfer (2022): for instance,

compare their Figure 2 with our Figure 7.
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earlier (with the motivation that 2 is the minimum sample size required for calculating

2 empirical moments, i.e., the mean r̄τ and variance s̄2τ ). This modifies the mixture

distribution from equation (23): the first component becomes T2ατ (ℓτ , βτ (1 + 1/λτ )/ατ )

with a reduced value of ατ , and the second component turns into T2(r̄τ , 3s̄
2
τ/2). As a

result, the tails of the mixture acquire more probability mass.

The interesting case here is when p = 0.2. For these alternative calibration results, see

in Table 6 the rows corresponding to “Model, T2α and T2” with column p containing 0.2.67

This version of the model performs very similarly to our preferred formulation described

in section §4.2 (the rows corresponding to “Model, T2α and T3” with column p containing

1.0 in the same Table), in particular it is able to match the equity premium and risk-free

rate targets equally well. Therefore, invariant ignorance priors prove to be important and

empirically successful, although specific dynamic structure of the economy embodied in

the frequency of regime changes is more debatable.

5 Discussion

“Rationalization” of puzzling facts: The prospect theory’s probability weighting

transformations, when applied to lottery choices as well as when transferred directly into

investment decisions in section §2, may simply be useful approximations of the (means

of) Beta and (a mixture of) the Student’s t densities that arise from a conventional

Bayesian updating procedure under certain discipline about prior assumptions, according

to our arguments from section §3 and calculations from §4. Specifically, this discipline

stipulates combining an initial invariant ignorance prior with external prior information

(judged/declared lottery probability or statistics on the latest regime) and sample infor-

mation. We then use the same conceptual approach to model both the lottery choices in

the lab experiments as well as the capital asset investments in financial markets, success-

fully matching the corresponding performance metrics. For instance, in the former case

we achieve a similar or better goodness of fit as the CPT68 with equal or lower number of

free parameters, while at the same time appealing to decision-theoretic rather than data-

fitting rationale. In the latter case, we match the levels of the equity risk premium and

risk-free rate as well as the discrepancy between equity and dividend volatilities relying on

67There is a caveat to these calculations. One of the mixture density’s components, a Student’s t

distribution with 2 degrees of freedom T2(r̄τ , 3s̄2τ/2), has tails that are heavy enough for causing problems

with integral convergence, in particular it does not have a finite variance (while a Student’s t distribution

with just more than 2 degrees of freedom does). To circumvent the problem, in our numerical calculations

we utilize the relationship
∫
f(x)(1− p)π1(x) dx+

∫
f(x)pπ2(x) dx =

∫
f(x) ((1− p)π1(x) + pπ2(x)) dx,

and work directly with the integrand f(x) ((1− p)π1(x) + pπ2(x)). Using the routines from the standard

numerical integration package (Piessens et al., 1983), the integral converges for a low enough mixture

weight p (as long as f(x) does not contain too high moments of x). Effectively, such a procedure evaluates

numerically a convergent integral that is a small perturbation away from our “razor-edge” case, and the

result should be viewed as an approximation.
68Which is a very high bar to reach, according to Fudenberg et al. (2022).
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plausible levels of risk-aversion, while appealing to the same decision-theoretic grounds

as above (and with an addition of the regime-change probability, which is calibrated

separately).

In other words, our theoretical results suggest a “rationalization” of the stylized empiri-

cal facts across two different domains, that is Kahneman–Tversky’s probability distortions

(along with Allais’s and Ellsberg’s paradoxes) in experiments with lotteries as well as the

equity premium and risk-free rate puzzles in asset prices.

Alternative explanations: Alternative models aimed at rationalizing these empirical

facts have been proposed, but they are usually not applicable to both micro-level (i.e.,

probability distortions in laboratory experiments with lottery choices) and macro-level

phenomena (i.e., risk premia in asset prices on financial markets).

Micro-level theories, such as models based on rank-dependent utility (as in Epstein

and Zin, 1990) or on the noise in neural information processing (e.g., Steiner and Stew-

art, 2016), rely on specific constraints stemming from individual preferences and costs.

However, in competitive markets idiosyncratic effects usually would be “arbitraged away”

by professional institutional agents, so these micro-level theories must be combined with

arguments about a sufficiently large size of such “behavioral” investors for them to be

marginal market participants and on the limits of arbitrage (Shleifer and Vishny, 1997).

Additionally, most of the empirical evidence underlying such theories comes from experi-

ments with small stakes, and also the magnitudes of deviations from the classical theory

is known to significantly diminish with experience (see Fox et al., 1996; List, 2004; List

and Haigh, 2005; Van de Kuilen and Wakker, 2006; Van de Kuilen, 2009).69 (But, of

course, the above does not say anything against the validity of such theories within their

usual domain, in fact we view them as complementary to the approach proposed here.)

Conversely, macro-level theories, which emphasize the role of uncertainty about an

economy’s evolving structure (Weitzman, 2007), habit formation (Campbell and Cochrane,

1999) and so on, do not directly translate to static stochastic choice setups.

Unifying framework: The recognition that learning and inference from the limited

available information are inherent constituents of decision-making under risk and uncer-

tainty offers a rational unifying perspective on a theoretical normative axiomatic pre-

scription for and empirical positive statistical description of the optimal choice in this

setting. Indeed, rational behavior of our decision-makers entails that their optimal de-

cisions, made effectively under the unobserved but inferred data-generating distribution,

satisfy the standard von Neumann–Morgenstern axioms. Viewed by experimenters or

econometricians under an observed but inadequate sample distribution, however, these

69Moreover, in the case of cognitive noise models the measures of cognitive uncertainty are increasing in

the sample size, which amplifies probability distortions, thus hampering rather than helping professional

investors.
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same decisions seem to deviate from rationality and exhibit phenomena such at the Allais

and Ellsberg paradoxes or the equity premium puzzle.

Revealed priors: Our approach to decision-making rests on ignorance prior distribu-

tions, and within this class we particularly emphasize the so-called Jeffreys priors. We

found that both in decisions on binary lotteries and in decisions on capital asset invest-

ments ignorant Jeffreys priors align well with experimental results; but in the case of

lottery choice the best-fitting, or revealed, priors, though being ignorant, deviate some-

what from the Jeffreys prescriptions. Specifically, the number of pseudo-observations

contained in priors (i.e., their strength) revealed to fit the behavior in lottery experiments

best is larger than in the Jeffreys prior: 3.25–13.94 (depending on the experiment) as op-

posed to 1.00. As a result, in the former case there is a more pronounced nonlinearity and

overweighting of tail probabilities (their shrinkage to the center of distribution) of π(p|q),
and a relatively higher number of new (pseudo-) observations is needed to move inferred

probabilities p from their initial prior to communicated values q. However, in these terms

revealed priors are still weaker than the degree of confidence in description-based com-

munication, pinned down at 23.24 pseudo-observations. Thus, the role of ignorant priors

is secondary to communicated information. In this sense, revealed priors are fairly close

to the Jeffreys solution.

It is worth noting that higher number of prior pseudo-observations is beneficial in the

environments when effective sample size of any new observations is less than nominal and

data should not be taken at face value. For example, in the presence of serially correlated

data, which is famously not the case with asset returns but prevalent in many other natural

processes. A related point is that data-generating mechanism for new observations may

be more trustworthy in the case of large public markets than in small laboratories. In

addition to the above, robustness to any information-processing noise may warrant priors

with higher numbers of pseudo-observations. While in equilibrium several models and

priors each tuned to a different environment (cf. Gerd Gigerenzer’s adaptive toolbox) or

different degree of agents’ sophistication (as shown by Bruhin et al., 2010) are likely to

coexist, it is probably not surprising that a more professional, larger-stake, competitive

and repeated nature of public markets results in the aggregate prior there being more

attuned with the actual environment as well as with the fully rational behavior than

what has been found in laboratory experiments.

Source confidence: Our confidence measure (represented by na, nd, ne, as well as τ
⋆)

quantifies the weight of the communicated information about a given data-generating

mechanism (or a source of uncertainty) in terms of (pseudo-) observations, with directly

sampled information serving as a gauge for informativeness of the intermediary sources. It

provides a mutually consistent treatment of ambiguous, described and experienced infor-

mation in ergodic environments as well as information from the current and past regimes
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in non-ergodic ones. Taking the same prior distribution in judgement-, description- and

experience-based cases, we are able to compare confidence measures across contexts: (a)

empirically, confidence measures in description- and experience-based scenarios are very

close — 23.24 and 19.57 (pseudo-) observations, respectively, which suggests that after all

they represent very similar sources of uncertainty70; (b) and even though on the surface

it would appear to be much lower under ambiguity, an explicit approach recognizing the

two-part nature of the underlying data-generating mechanism finds the degree of confi-

dence that aligns closely with the other two communication scenarios — 21.15 pseudo-

observations separately for the upstream and for the downstream sources of uncertainty,

which suggests that in all three cases data-generating (sub) mechanisms are treated about

equally except for the need to compound them in the more complex judgement-based case.

Admittedly, there is a large modern literature measuring experimental differences between

lottery choices in ambiguity-, description- and experience-based scenarios (Abdellaoui et

al., 2011a; Hertwig et al., 2004; Abdellaoui et al., 2011b), and the advantage of our

approach is reducing them to a single-scalar and readily interpretable measure.

Instrumentally for a decision-maker the role of confidence measure is to modulate

the relative influence of communicated information and (ignorant) prior, with a higher

degree of confidence leading to a more linear probability weighting and thinner tails of

the posterior distribution.

Shrinkage: We obtained a manifestation of the well-known shrinkage phenomenon.

Originally, shrinkage was proposed for better estimation of the mean of a multivariate

Normal distribution from an ultra-small sample of a single vector observation (Stein,

1956; James and Stein, 1961).71 The concept of Stein-type shrinkage stimulated the rein-

terpretation of old as well as the development of new methods of statistical analysis,

such as the Good–Turing frequency estimation in computational linguistics and machine

learning (Good, 1953); least absolute shrinkage and selection operator, or LASSO, esti-

mation in statistics and machine learning (Tibshirani, 1996); and improved estimates of

the variance-covariance matrix (Ledoit and Wolf, 2004a; Jagannathan and Ma, 2003) and

of the mean vector (Jorion, 1985; 1986) of portfolio returns in finance.

In our case, it amounts to deforming (“shrinking”) the distribution of interest in the

direction toward the invariant ignorance prior represented by a quasi-uniform distribution

(“shrinkage target”). This quasi-uniform prior distribution serves as an “Occam factor”

that favors simple models. Effectively, it countervails overfitting the observed data, which

is a major concern in the situation of undersampling. In particular, distributions of the

lotteries’ (transformed) probabilities are shrunk toward the uniform distribution on the

[0, π/2] interval, thus biasing the small probabilities upward and the large probabilities

70Quantitatively, comparable magnitudes arise if, for instance, confidence nd is high enough, while

subjects are able to draw enough observations for ne to catch up with it.
71In this connection, also see the regularization literature, for example, Chen and Haykin (2002), Bickel

and Li (2006).
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downward. Distributions of the asset returns’ (log-) variances and (conditional) means

are both shrunk toward the uniform distributions on R, prudently amplifying the uncer-

tainty and skepticism about these returns-driving parameters. (See Appendix §E for more

details.)

Dynamics: The reason our agents rely on ignorance priors that lead to overweighting of

tail probabilities is the constantly evolving environment they operate in and the ensuing

scarcity of information. This problem is less severe in the case of different lotteries in

the lab (e.g., in most experiments subjects do not have to guess when a new lottery is

played). In the case of financial markets, temporally aggregated quarterly-frequency data

available to consumption-based asset pricing modelers may be concealing the changes

in the underlying returns-generating probability distributions that happen at higher fre-

quencies. Applying model-free changepoint detection algorithms to daily-frequency data,

we pin down the quarterly probability of such regime changes at p = 1 in our preferred

calibration or p = 0.2 in the alternative specification. What we then get is a story of

perpetual changes that are (a) more frequent than “rare disasters” (cf. Veronesi, 2004;

Barro, 2009) or even than not-so-rare parameter/model breaks (Smith and Timmermann,

2021; and even Farmer et al., 2023; Borup et al., 2024), (b) usually fairly moderate in

magnitude (see Beason and Scherindorfer, 2022), as well as (c) symmetric and so can be

good or bad (as in Tsai and Wachter, 2016). Since changes of this objective frequency and

magnitude lead to substantial amplification of subjective tail probabilities, their effect is

similar (at least in temporally aggregated sense) to that of extrapolative beliefs suggested

in, e.g., Bordalo et al. (2019).72

Within the same environment, agents update their beliefs about the underlying param-

eters and future random variable realizations by digesting new sample data. For example,

as more observations of successes or failures from the same lottery are accumulated, devia-

tions from linearity in probability weights and relative overweighting of small probabilities

gradually vanish: effectively, ne value increases so that posterior mean of p approaches q in

equation (12) — this is “learning”. Importantly, an explicit test confirms that accounting

for the number of sampled draws does improve the explanatory performance of our model

for the results of laboratory experiments with decisions from experience. Moreover, as

rational agents accumulate familiarity with a given class of data-generating mechanisms,

they will learn more accurately the optimal values of relevant confidence parameters. As

a human subject participates in more laboratory experiments offering a similar kind of

lottery choices (but with different values of q), α and β should decrease relatively to ne

if data prove to be accurate, serially uncorrelated, and the subject learns how to better

process them, although it is an empirical question how closely they will get to the Jeffreys

solution — one can think of this as “adaptation”; separately, na or nd should increase

72Also note that our periodic learning re-initializations in response to parameter changes can be alter-

natively interpreted as a discrete version of the continuous discounting of past data.
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relatively to α and β as the subject verifies the reliability of a given source of uncertainty

— this can be interpeted as “confidence accumulation” (now we are talking about the

steps beyond the third step of the algorithm in §3.2). In the case of financial markets,

depending on their own investment history agents may analogously consider that some

regime changes are less dramatic than others, and may correspondingly adapt their priors,

but it is again an empirical question how they will move relatively to the Jeffreys values.

6 Conclusion

This paper in motivated by some stylized facts about the paradoxical choice behavior hu-

mans exhibit in laboratory experiments as well as about the asset pricing puzzles found in

financial markets, drawing empirical parallels between these two decision-making domains.

Arguably, these stylized facts reflect the human aspiration to account for unobserved con-

tingencies when dealing with only small samples of relevant data, a situation that arises

routinely in practice in the form of new gambles or new economic regimes.

Indeed, we can rationalize such decision-making behavior by taking an explicitly dy-

namic perspective and appealing to Bayesian updating under the requirements of pa-

rameterization invariance and maximum entropy. Effectively, this formulates rational

optimality-motivated foundations behind the probability distortions captured by the CPT

of Kahneman and Tversky in microeconomics and decision theory, as well as behind the

equity premium/risk-free rate and some other puzzles in macro-finance. Our theoreti-

cal results found empirical support, they are consistent both with the observations from

laboratory experiments and with the data on financial market prices.

In future research, it would be interesting to conduct laboratory experiments with lot-

tery decisions shedding further light on the factors explaining the variation in the strength

of ignorance priors revealed by human subjects, as well as on the relationship between

specific characteristics of different sources of uncertainty and the confidence amounts

that decision-makers assign to them, with a particular focus on how the behavior changes

with time. It would also be helpful to perform a deeper analysis of regime changes in

macro-financial time series, notwithstanding the role of data sampling frequency as well

as robustness to detection procedures used and maintained model hypotheses. On the

theoretical side, the search for more definitive implementations of the principle of indif-

ference as well as the methods of maximum entropy and invariance to reparameterization

in canonical decision problems remains an important challenge lying ahead.
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